Pr 9788 – Specification for Horizontal Directional Drilling (HDD)
Pr9788 - Specification for Horizontal Directional Drilling

Documents Details
This document is only valid on the day it was printed.

Version Review

<table>
<thead>
<tr>
<th>Revision</th>
<th>Reviewed by</th>
<th>Approved by</th>
<th>Date approved</th>
<th>Change</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>B. Maule</td>
<td>A. Schoenmaker</td>
<td>30/11/2016</td>
<td>Correct references to other UW technical standards</td>
<td>Consistency</td>
</tr>
<tr>
<td>3.0</td>
<td>G. Burnett</td>
<td>G. Burnett</td>
<td>02/10/2018</td>
<td>Periodic review</td>
<td>N/A</td>
</tr>
<tr>
<td>4.0</td>
<td>B. Maule</td>
<td>A. Creevey</td>
<td>23/10/2018</td>
<td>General refinement of specification as a result of lessons learned</td>
<td>Lessons learned from previous project</td>
</tr>
<tr>
<td>5.0</td>
<td>L. Bryson</td>
<td>N/A</td>
<td>N/A</td>
<td>Reflect current WSAA reference</td>
<td>Minor admin amendment</td>
</tr>
<tr>
<td>6.0</td>
<td>B. Maule</td>
<td>G. Burnett</td>
<td>10/10/2019</td>
<td>Section 7.6.14 Tracer Wire</td>
<td>Clarification of requirement</td>
</tr>
</tbody>
</table>

Document Control

<table>
<thead>
<tr>
<th>Document Sponsor</th>
<th>Infrastructure Technical Standards Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Author (Owner)</td>
<td>Manager Capital Delivery</td>
</tr>
<tr>
<td>Subject Matter Expert</td>
<td>Project Services Unit Leader – Capital Delivery</td>
</tr>
<tr>
<td>References</td>
<td>Refer to Section 3</td>
</tr>
</tbody>
</table>
Pr9788 - Specification for Horizontal Directional Drilling
### 7.7 Drilling and Pipe Installation

7.6.1 Drilling Water ................................................................. 23
7.6.2 Pipe Welding and Jointing - General .................................. 23
7.6.3 Pipe Welding and Jointing – HDPE Pipe ................................ 24
7.6.4 Pipe Welding and Jointing – PVC Pipe ............................... 24
7.6.5 Pipe Welding and Jointing – Steel Casing .......................... 24
7.6.6 Pipe Welding and Jointing – Pipe Stringing ......................... 24
7.6.7 Drilling Fluid Management .................................................. 25
7.6.8 Drilling, Reaming, Conditioning ......................................... 25
7.6.9 Pilot Hole ....................................................................... 26
7.6.10 Reaming ......................................................................... 26
7.6.11 Hole Conditioning.............................................................. 26
7.6.12 Pipe Pullback .................................................................. 26
7.6.13 Pipe Damage ................................................................. 27
7.6.14 Tracer Wire ...................................................................... 27
7.6.15 Drill Pipe ........................................................................ 28
7.6.16 Bottom Hole Assembly (BHA) .......................................... 28
7.6.17 Grouting ........................................................................ 28
7.6.18 Pipe Cleaning and Gauging ............................................. 29
7.6.19 Alignment Tolerances ..................................................... 29
7.7 Survey .............................................................................. 30

### 8. Testing and Commissioning

8.1 Hydrostatic Testing ............................................................... 31
8.2 Leakage Testing ................................................................... 31
8.3 Disinfection/Chlorination ...................................................... 31

### 9. Project Completion and Handover

9.5 Post-Construction Dilapidation Report .................................. 32

### 10. Principal Representation

10. ......................................................................................... 32

### 11. Typical HDD Inspection and Test Plan (ITP)

32

### Appendix A – Additional Requirements for “Critical” HDD Crossings

36

5. Project Preliminaries .............................................................. 36
5.2 Design ............................................................................. 36
Pr9788 - Specification for Horizontal Directional Drilling

Additional Sub-Clauses ........................................................................................................ 36
Amendment to Sub-Clauses .................................................................................................. 36
5.3 Governing Documentation .............................................................................................. 36
Amendment to Sub-Clauses .................................................................................................. 36
6. Procurement ...................................................................................................................... 37
6.5 Personnel ......................................................................................................................... 37
Amendment to Sub-Clause .................................................................................................... 37
7. Project Execution .............................................................................................................. 37
7.5 Monitoring and Reporting .............................................................................................. 37
Amendment to Sub-Clause .................................................................................................... 37
Alternative Sub-Clause ......................................................................................................... 38
7.5.3 Surface Settlement ...................................................................................................... 38
7.6 Drilling and Pipe Installation .......................................................................................... 38
Replace Sub-Clauses 7.6.7 and 7.6.15 with the following ......................................................... 38
7.6.7 Drilling Fluid Management ......................................................................................... 38
7.6.15 Drill Pipe .................................................................................................................... 39
Additional Sub-Clause .......................................................................................................... 40
7.6.19 Annular Pressure Monitoring .................................................................................... 40
7.7 Survey ................................................................................................................................ 40
Replace Sub-Clause 7.8.1 with the following: ...................................................................... 40

List of Tables
Table 1 – List of General Definitions ................................................................................... 9
Table 2 – List of Acronyms .................................................................................................... 12
Table 3 – Design Drawing Requirements ............................................................................. 15
Table 4 – Work Plans ............................................................................................................ 15
Table 5 – Document Package .............................................................................................. 16
Table 6 – Work Procedures .................................................................................................. 16
Table 7 – Safe Work Method Statements ............................................................................. 16
Table 7 – Key HDD Personnel Training and Experience ....................................................... 19
Table 8 – HDD Small, Medium and Maxi Rig Classification Characteristics ..................... 20
Table 9 – Technical HDD Information Records ................................................................... 23
Table 10 – Product Diameter and Reamed Diameter Recommended Relationship (NASTT 2008) ....................................................................................................................... 26
Table 11 – Horizontal Directional Drilling Tolerances .......................................................... 29
Table 12 - HDD Inspection and Test Plan .............................................................................. 33
Table 13 – Design Drawing Requirements ........................................................................... 36
Table 14 – Work Plans ........................................................................................................ 36
Table 15 – Alternative Table 7: Key HDD Personnel Training and Experience ................. 37
Table 16 – Alternative Table 9: Technical HDD Information Records ................................. 37
1. Purpose

1.0.1. The intent of this Document is to outline the minimum deliverables and standards that the contractor needs to comply with when performing Horizontal Directional Drilling (HDD) works on Unitywater projects.

1.0.2. Its purpose is to ensure consistency across all projects delivered by Unitywater and that the safety, quality, environmental and design objectives required by Unitywater are achieved.

1.0.3. In addition to the requirements in this document, a particular drilling crossing may be assessed as “Critical”. In this instant the additional requirements in Appendix A also need to be adhered to. As a minimum, the Critical Crossing Criteria table below shall be used in this assessment.

### Critical Crossing Criteria

<table>
<thead>
<tr>
<th>Item</th>
<th>Criteria</th>
<th>Non-Critical Crossing</th>
<th>Critical Crossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propose length of bore</td>
<td>≥500m</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Diameter of bore</td>
<td>≥400mm</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Crossing location in high risk area</td>
<td>Environmental area, roads, buildings</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Geology</td>
<td>Poor ground (soft, gravel, cobbles) or hard rock ≥60MPA</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
2. Scope

2.0.1. This Specification defines the minimum technical requirements for Horizontal Directional Drilling construction works undertaken on Unitywater projects.

2.1 Definition

2.1.1. Horizontal directional drilling (HDD) shall be defined as a trenchless construction method for installing pipelines which incorporates the following features:
- Pilot hole is drilled along the design alignments using a steerable and trackable drill;
- The hole is reamed to the required diameter in one or more passes;
- The carrier pipeline is pulled through the enlarged borehole;
- The drilled hole is continuously stabilised by use of a bentonite or polymer drilling fluid.

2.2 Order of Precedence

2.2.1. Where a discrepancy exists between the Drawings, this Specification and the other Unitywater specifications the Contractor shall seek clarification from the Superintendent's Representative.

2.2.2. This Specification shall take precedence over any other standard, code or guideline, but cannot diminish any requirement of a standard, code or guideline to which compliance is required by law within the jurisdiction of the work being performed.

2.2.3. All other applicable standards, codes & specifications referred to by documents that form part of this Specification shall also be followed.

3. References

3.1 General

Nil.

3.2 Applicable Legislation and Regulation

3.2.1 At least the following legislation and related regulation shall apply:
- Workplace Health and Safety Act 2011;
- Workplace Health and Safety Regulation 2011;
- Water Supply (Safety and Reliability) Act 2008;
- Environmental Protection Act 1994;
- Queensland Building Services Authority Act 1991;
- Professional Engineers Act 2002.

3.3 Codes of Practice (ratified by Legislation)

3.3.1 At least the following industry codes of practice apply:
a. Workplace Health and Safety Queensland Code of Practice; Managing noise and preventing hearing loss at work 2011;

b. SEQ Water Supply and Sewerage Design and Construction Code (SEQ WS & S D & C Code) Including Accepted Infrastructure Products and Materials Lists;


2.4 Codes of Practice (not ratified by Legislation)

3.4.1 At least the following industry guidelines shall apply

a. Australasian Society for Trenchless Technology (ASTT), (2010). Guidelines for Horizontal Directional Drilling, Pipe Bursting, Microtunnelling and Pipe Jacking, Rev 1, February 2010;


c. The Plastics Industry Pipe Association of Australia (PIPA);

d. Water Services Association of Australia (WSAA) Codes;

e. Water Services Association of Australia (WSAA) Guideline:
   - Dechlorination of Drinking Water to Discharged Waterways, National Guidance for the Urban Water Industry 2019

f. Polyethylene Pipeline Code – WSA 01 – 2004;

g. Unitywater Technical Specifications:
   - Pr9902 Specification for Civil and Earth Works
   - Pr9903 Specification for Building and Structural Works
   - Pr9875 Specification for Non-Pressure Pipe Construction
   - Pr9904 Specification for Pressure Pipelines Construction
   - Pr9680 Specification for Electrical Installations at Network Sites
   - Pr9693 Specification for Mechanical Installation
   - Pr9825 Specification for Shafts
   - Pr9032 Procedure for Managing Water Quality during Mains Commissioning
   - F10045 Water Quality Mains Commissioning Form

4. Definitions, Abbreviations, Acronyms

Table 1 – List of General Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                ęp</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Ground Loss</td>
<td>Ground loss is defined as the volume of material that has been excavated in excess of the theoretical design volume of excavation.</td>
</tr>
<tr>
<td>Hold Point</td>
<td>A mandatory verification point beyond which work cannot proceed without approval of the Principal.</td>
</tr>
<tr>
<td>Horizontal Directional Drilling (HDD)</td>
<td>HDD is a trenchless method for installing a product that serves as a conduit for liquids, gasses or as a duct for pipe, cable or wire line products. It is a multi-stage process consisting of site preparation and restoration, equipment setup and drilling a pilot bore along a predetermined path and then pulling the product back through the drilled space. When necessary, enlargement of the pilot bore hole may be necessary to accommodate a product larger than the pilot bore hole size. This process is referred to as back reaming and is done at the same time the product is being pulled back through the pilot bore hole.</td>
</tr>
<tr>
<td>Hydro-lock</td>
<td>Is a condition that occurs when the circulation from the bore is lost and the formation is resistant to fracturing or absorption of the drilling fluid, creating a hydraulic cylinder in the ground.</td>
</tr>
<tr>
<td>Hydrofracture</td>
<td>Is a condition that occurs when the circulation from the bore is lost and the formation is resistant to fracturing or absorption of the drilling fluid, creating a hydraulic cylinder in the ground.</td>
</tr>
<tr>
<td>Makeup torque</td>
<td>The recommended torque forces required to joint each threaded drill pipe connection.</td>
</tr>
<tr>
<td>Marsh Funnel</td>
<td>A device for measuring viscosity by observing the time it takes a known volume of liquid to flow from a cone through a short tube.</td>
</tr>
<tr>
<td>Operator</td>
<td>Suitably trained or qualified person who operates machinery, an instrument or other equipment.</td>
</tr>
<tr>
<td>Permit</td>
<td>A document that controls an activity that is considered high and not able to be commenced without completing important requirements.</td>
</tr>
<tr>
<td>Principal</td>
<td>Unitywater</td>
</tr>
<tr>
<td>Principal Drawings</td>
<td>Drawings issued to the Contractor forming part of the Contract. These drawings are owned by the Principal and are to be used to guide or govern the work under the contract.</td>
</tr>
<tr>
<td>Project Manager</td>
<td>A person nominated by the Contractor responsible for the construction of the contract.</td>
</tr>
<tr>
<td>Red Line Drawings</td>
<td>Approved RPEQ Design drawings marked up as Red-Line, detailing the as-built status data.</td>
</tr>
<tr>
<td>Safe Work Method Statement</td>
<td>A document summarising the work required for an activity. This document summarises the hazards and the required measures to control minimise safety risk.</td>
</tr>
<tr>
<td>Scope of Work</td>
<td>A document summarising the works to be completed under the Contract.</td>
</tr>
<tr>
<td>Separation Plant</td>
<td>An elaborate system of separating excavated material from the transportation fluid. Such a plant would employ shakers, screens, hydro cyclones or centrifuges to achieve this solid / fluid separation.</td>
</tr>
</tbody>
</table>
### Term Definition

**Specification**
This document, that specifies, in a complete, verifiable manner, the requirements, design, behaviour or other characteristics of a system, component, product, result or service and, often, the procedures for determining whether these provisions have been satisfied.

**Superintendent**
An individual appointed by the Principal to perform two functions:
- Be the Principal's agent for the works under the Contract;
- Administer the Contract fairly and perform certain certifier requirements.

**Superintendent's Representative**
A person nominated by the Superintendent, to act on behalf of the Superintendent.

**Technical Advisory Inspector**
A person nominated by the Superintendent to perform the role of on-site inspector ensuring the trenchless works are being performed in accordance with the approved design and methodology. They shall be adequately experienced in trenchless works and be able to provide technical advice regarding any issue relating to the works.

**Trenchless Construction**
Installation of new or replacement of underground infrastructure with minimal disruption to surface environment, traffic, business and other activities.

**Visual Inspection**
The process of looking over a piece of equipment or works using the naked eye. It requires no equipment except the naked eye of a trained inspector.

**Witness Point**
An identified point in the work process where the Principal may review, witness, inspect method or process of work. The activities however may proceed.

### Table 2 – List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTT</td>
<td>Australasian Society for Trenchless Technology</td>
</tr>
<tr>
<td>AS / NZS</td>
<td>Australian / New Zealand Standard</td>
</tr>
<tr>
<td>ASS</td>
<td>Acid Sulphate Soils</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>DBYD</td>
<td>Dial Before You Dig</td>
</tr>
<tr>
<td>GBR</td>
<td>Geotechnical Baseline Report</td>
</tr>
<tr>
<td>HDD</td>
<td>Horizontal Directional Drilling</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene Pipe</td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
</tr>
<tr>
<td>IFC</td>
<td>Issued for Construction</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation</td>
</tr>
<tr>
<td>ITP</td>
<td>Inspection and Test Plan</td>
</tr>
</tbody>
</table>
Pr9788 - Specification for Horizontal Directional Drilling

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATA</td>
<td>National Association of Testing Authorities</td>
</tr>
<tr>
<td>NASTT</td>
<td>North American Society for Trenchless Technology</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly Vinyl Chloride</td>
</tr>
<tr>
<td>$P_{\text{average}}$</td>
<td>Pressure Average</td>
</tr>
<tr>
<td>$P_{\text{max}}$</td>
<td>Maximum Allowable Pressure</td>
</tr>
<tr>
<td>$P_{\text{min}}$</td>
<td>Pressure Minimum</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>RPEQ</td>
<td>Registered Professional Engineer Queensland</td>
</tr>
</tbody>
</table>

4.1 Principal/Standard Drawings

4.1.1 Where the form of Contract is “Design and Construct”, the Principal Drawings are a high-level concept design of the Principal’s project requirements. The Contractor is to use these drawings as a guide to base the preliminary and final design upon. The Principal Drawings will typically illustrate the following elements:

- Site constraints;
- An indicative trenchless alignment according to best practice;
- Pits, shaft or tie in locations;
- Approximate drive lengths;
- Jacking/Enveloper/Casing pipe and carrier pipe details.

4.1.2 Alternatively, where the form of Contract is “Construct Only”, the Principal Drawings are a prescriptive representation of exactly what is to be constructed under the Contract. These drawings will include the minimum information that the Contractor will require to build the works. The contractor shall be responsible to identify any changes required, or ambiguities found, in the Principle Drawings which must be discussed and resolved with the Principal immediately.

5. Project Preliminaries

5.1 Approvals

5.1.1 For a Design and Construct contract, third party approvals are to be obtained by the Contractor. For a “Construct Only” contract third party approvals usually obtained by Unitywater, however, in some instances approvals may be the responsibility of the Contractor. The Contractor is to refer to the Project Specific Specification for required approvals.

5.1.2 No work is to begin on site preparation or HDD activities until all relevant permits and approvals have been gained and signed off by the relevant authority. The following authorities may be required to authorise the works:

- Queensland Government Department of Transport and Main Roads;
• Queensland Rail and/or other rail infrastructure owners;
• Local Government;
• Other Service Providers;
• Private land owners.

5.1.3 The Contractor shall be required to adhere to any approval conditions that the Principal or asset owner specifies.

5.2 Design

5.2.1 The Contractor shall be responsible for the design and construction of all aspects of the HDD works including any temporary works and temporary supporting structures. All design assumptions regarding subsurface conditions, equipment requirements, groundwater and other factors are the responsibility of the Contractor and shall be fully documented.

5.2.2 Based on the alignment shown in the Principal Drawings, the Contractor shall design and size the excavated profile to accommodate all temporary and permanent works.

5.2.3 A design vertical and horizontal profile shall be submitted to the Superintendent’s Representative for review prior to commencement of work.

5.2.4 The Contractor shall not proceed with any work until the Contractor’s RPEQ certified design has been accepted by the Superintendent’s Representative. Acceptance of the Contractor’s design by the Superintendent’s Representative in no way diminishes the responsibility of the Contractor for the design.

5.2.5 The HDD crossing shall be designed in accordance with this Specification and the referenced documents by a person suitably qualified and having experience with the design considerations required for this type of work. The profile design shall take into account the following:

• Temporary works associated with the HDD construction;
• Pipe/Drill rod bending radii;
• Steering capability of the proposed method/equipment;
• Drilling fluid performance;
• Tensile loads (expected and maximum allowable);
• Potential for hydrofracture;
• Pipeline materials properties (typically Steel, HDPE or PVC) & operations requirements (lifespan and loads);
• Location of existing services.

5.2.6 The Contractor shall be responsible for submitting a design document package for review and approval. The document package shall form part of the Contractors ITP as a hold point. The document package shall include but not limited to:

• Detailed profile design drawings;
• Temporary works design – Drill rig thrust restraints, shoring systems, pits etc.;
• Drilling Fluid Design and Management Program;
• Settlement.

5.2.7 The Principal Drawings shall be used as a guide to confirm that the crossing is possible to be delivered via HDD methods. The Contractor is not to rely on the Principal Drawings as being the built solution as it is the Contractor’s responsibility for the final alignment and design, and any temporary works design required.

5.2.8 The Principal will be responsible for the operational design of the permanent pipeline, however the Contractor is required to confirm the suitability of this pipe for installation via HDD methods.

5.2.9 All temporary works are to be designed by an RPEQ engineer taking into account the ground conditions. Any modifications to temporary works are to be approved by the RPEQ engineer prior to works being carried out.

5.2.10 Under the design requirements of this Specification the Contractor is to produce the Drawings outlined in Table 3 below.

Table 3 – Design Drawing Requirements

<table>
<thead>
<tr>
<th>Drawing Details</th>
<th>Plan / Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Layouts (incl. Laydown, Storage areas, Entry and Exits)</td>
<td>Plan</td>
</tr>
<tr>
<td>HDD Alignment</td>
<td>Plan + Elevation</td>
</tr>
<tr>
<td>Borehole details</td>
<td>Elevation</td>
</tr>
<tr>
<td>HDD Pipe Stringing Layout</td>
<td>Plan</td>
</tr>
</tbody>
</table>

5.3 Governing Documentation

5.3.1 As a minimum and in addition to the documentation required in the Contractor Management Plan Requirements, the Contractor must submit for approval the following governing documentation as outlined in Table 4.

<table>
<thead>
<tr>
<th>Design Documentation Submittals</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Profile Design Drawings</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Temporary Works Design – Drill Rig Thrust restraint, shoring systems, pits etc.</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Drill Fluid Design and Management Programme</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>

5.3.2 Table 6 and Table 7 below.

Table 4 – Work Plans

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Lift Plan(s)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Plant Suitability and Maintenance Plan</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Risk and Contingency Management Plan</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>
Inspection Test Plan(s) | 4 weeks before work

### Table 5 – Document Package

<table>
<thead>
<tr>
<th>Design Documentation Submittals</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Profile Design Drawings</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Temporary Works Design – Drill Rig Thrust restraint, shoring systems, pits etc.</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Drill Fluid Design and Management Programme</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>

### Table 6 – Work Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site establishment</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Horizontal Directional Drilling</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Fluid Design and Management</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Conductor Casing Installation (If required)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Horizontal Directional Drilling Surveying</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Casing pipe welding (or jointing) (If required)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Carrier pipe welding (or jointing)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Pipe pull back (including overbend details)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Annulus grouting (if required)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Hydrostatic testing and Chlorination (If required)</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Demobilisation of equipment and site</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>

### Table 7 – Safe Work Method Statements

<table>
<thead>
<tr>
<th>Safety Work Method Statements</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation of a crane</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Operation of the HDD Rig</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Operation of the slurry system</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Operation of the water treatment plant</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Work at heights</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Work in a confined space</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Hot works</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Work at night under artificial light</td>
<td>4 weeks prior to works</td>
</tr>
<tr>
<td>Lifting</td>
<td>4 weeks prior to works</td>
</tr>
</tbody>
</table>

### 5.4 Risk Assessment and Control

#### 5.4.1 The Contractor is to prepare and implement an approved contingency plan dealing with the key HDD risks identified in the risk register. As a minimum the Contractor is
to have defined plans complete with equipment and materials on standby to mitigate against the following HDD risks:

- Fluid loss.
- A hydrofracture event.
- Hydro-lock (loss of fluid circulation).
- Hole collapse.
- Fluid pit overflow.
- Hydrocarbon spill.
- Drill pipe or Bottom Hole Assembly failure.
- Serious workplace safety incidents in remote areas.

5.4.2 Contractor shall provide a detail procedure for fluid management to be followed and timely notification given to Unitywater.

5.4.3 Risk assessment for project and controls shall be assessed per every drill program while ensuring that risks are effectively communicated to personnel performing the works.

5.5 Geotechnical Information and Risk

5.5.1 A Geotechnical Investigation will be carried out by the Principal for the project and the resulting information is to be provided to the Contractor in the form of a factual report (Geotechnical Data Report), or complete Geotechnical Baseline Report (GBR). The Report will cover a minimum set of requirements/criteria to aid and guide the Contractor to assess the project and specifically make informed decisions with regards to:

- Rig selection;
- Tooling and drill pipe selection;
- Penetration rates;
- Conductor casing;
- Casing pipe;
- Hydrofracture risk;
- Drilling fluid program;
- Time and Cost;
- Potential pullback loads;
- Carrier pipe selection.
- Temporary works design

5.5.2 The level of geotechnical investigation shall be determined by, but not limited to the following inputs:

- Proposed methodology;
• Local site geology;
• Local site hydrogeology;
• Project capital value.

5.5.3 The Contractor shall inform itself thoroughly and make its own deductions and conclusions as to the difficulty of maintaining required excavations and of doing other work affected by the geology and hydrogeology of the site. The Contractor shall supply a drilling fluids program relevant to the geotechnical information and associated risks relevant to the site conditions.

5.5.4 The Contractor shall include all relevant matters of geotechnical information in the relevant ITP for works included.

5.5.5 Where the Contractor considers it necessary that additional site or subsurface investigations/reports are required, the Contractor shall bring this to the attention of the Superintendent’s Representative in a timely manner.

5.5.6 No warranty is expressed or implied that any information, opinions or conclusions, given in any factual or interpretive ground investigation report, supplied in good faith by the Principal, will present a complete or accurate picture of the Site.

6. Procurement

6.1 Approved Suppliers
6.1.1 The Contractor is to provide materials which have previously been approved for use as per the SEQ Water Supply and Sewerage Design and Construction Code Accepted Civil Products and Materials.

6.1.2 If the Contractor proposes to utilise non pre-approved products these are to be submitted to the Superintendent’s Representative for consideration.

6.2 Principal Supplied Materials
6.2.1 The Contractor shall document the receipt of any Principal Supplied Materials formally with the Superintendent’s Representative. The receipt of materials by the Contractor accepts the suitability of these products for inclusion in the Works.

6.2.2 All Principal Supplied materials shall be handled strictly in accordance with the manufacturer’s written instructions at all times.

6.3 Delivery, Storage and Security of Materials
6.3.1 The Contractor shall comply with, National Transport Commissions – Load Restraint Guide 2018, the manufacturer’s instructions for delivery, handling and storage of pipes and fittings, and with Specification for Pressure Pipe Construction (Pr9904)

6.3.2 The Contractor is to provide security for the Site and Works including the construction facilities, plant and equipment. Materials shall also be secured by the Contractor to prevent their removal by unauthorised personnel.

6.3.3 All pipes are to be maintained clean and dry (capped, plugged or blank flanged) from manufacturers facilities to final installation.

6.3.4 During construction, when pipes may be located outside the secured area for welding and/or laying purposes, they shall be located in a safe and stable location, secured
from movement via wedges and capped to stop any vermin or the public, access internally into the pipes.

6.4 Materials

6.4.1 Permanent materials are to fully comply with this Specification and the documents referenced herein. The Contractor shall prepare and submit Suppliers Certificates for all permanent materials to be included in the works.

6.4.2 The Contractor is to ensure that chemicals and hydrocarbons are used according to Principal’s accepted environmental practises complete with control measures to mitigate risk.

6.4.3 The Contractor is to ensure that the drilling fluids and chemicals that have the potential to come into contact with the ground are biodegradable, safe to water bodies and fire resistant.

6.5 Personnel

6.5.1 Appropriately trained and experienced personnel are required for the delivery of the works. Table 8 below summarises the minimum training and experience required for key personnel. Details of key personal experience shall be provided to the Superintendent’s Representative for approval before the works commence.

6.5.2 A HDD supervisor who is thoroughly knowledgeable of the equipment, drilling and HDD procedures is to be present at the job site during the entire installation and be available to address immediate concerns and health and safety issues.

6.6 Plant

6.6.1 All trenchless construction operations shall be performed using specialist equipment.

6.6.2 All plant must be of a good standard and the Superintendent’s Representative shall be permitted to visit the premises of the storage, manufacture or refurbishment of proposed specialist plant for the purpose of inspection. The key Principal’s equipment assessment / inspection criteria is listed below:

- Plant is required to be in good safe working order;
- Plant is required to have a good service history;
- Plant is required to be fit for purpose.

6.6.3 The Contractor’s management plans must detail a system for daily checking and resolving of issues with the supplied plant and equipment.

6.6.4 As a minimum the HDD Contractor is to supply the following plant:

<table>
<thead>
<tr>
<th>HDD Role</th>
<th>Training / Qualification</th>
<th>Experience in Role (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Min Higher Education Diploma</td>
<td>5</td>
</tr>
<tr>
<td>HDD Supervisor</td>
<td>Rig and fluid training</td>
<td>3</td>
</tr>
<tr>
<td>HDD Driller</td>
<td>Rig and fluid training</td>
<td>1</td>
</tr>
<tr>
<td>HDD Offsider</td>
<td>Fluid training / Bore Tracking</td>
<td>1</td>
</tr>
</tbody>
</table>
• HDD drill rig;
• Drilling fluid pump;
• Excavator;
• Fit for purpose lifting machine for drill rod and pipes;
• A separation system (If required);
• Bentonite mixing plant;
• Power generator;
• Hot works plant;
• Storage tanks.

6.6.5 The HDD Contractor must have the appropriate contingencies in place to address any breakdowns so that the success of the drilling works is not compromised.

6.6.6 The HDD Contractor’s management plans must detail a system for daily checking and resolving of issues with the supplied plant and equipment. The Contractor must supply key critical spares to ensure that the HDD drilling equipment achieves a 90% working availability target.

6.7 Drill Rig

6.7.1 The drill rig must be adequately sized (thrust, pullback and torque) to be able to drill a borehole of the appropriate size, in the ground conditions indicated and pull in the product pipe or casing pipe.

6.7.2 The characteristics of the classification for HDD rigs are outlined below in Table 9.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Small Rig</th>
<th>Medium Rig</th>
<th>Maxi Rig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust/Pullback</td>
<td>&lt; 40,000 lbs</td>
<td>40,000-100,000 lbs</td>
<td>&gt;100,000 lbs</td>
</tr>
<tr>
<td>Max Torque</td>
<td>&lt; 9,000 ft. lbs</td>
<td>9,000-20,000 ft. lbs</td>
<td>&gt;20,000 ft. lbs</td>
</tr>
<tr>
<td>Rotational Speed</td>
<td>&gt; 130 rpm</td>
<td>90-210 rpm</td>
<td>&lt; 210 rpm</td>
</tr>
<tr>
<td>Carriage Speed</td>
<td>&gt; 100 ft./min</td>
<td>90-100 ft./min</td>
<td>90 ft./min</td>
</tr>
<tr>
<td>Carriage Drive</td>
<td>Chain, Cylinder, or Rack &amp; Pinion</td>
<td>Chain, Cylinder, or Rack &amp; Pinion</td>
<td>Rack &amp; Pinion with or without Cable Assist</td>
</tr>
<tr>
<td>Drill Pipe Length</td>
<td>1.5 – 3m</td>
<td>3 – 9.2m</td>
<td>9.2 – 12.2m</td>
</tr>
<tr>
<td>Drilling Distance*</td>
<td>&lt; 200m</td>
<td>&lt; 600m</td>
<td>&lt; 2500m</td>
</tr>
<tr>
<td>Power Source</td>
<td>&lt; 150hp</td>
<td>150-250 hp</td>
<td>&gt; 250 hp</td>
</tr>
</tbody>
</table>

* Note this is highly dependent on required borehole size and ground conditions.

6.8 Mud Pump

6.8.1 The mud pump must be sized appropriately to adequately cope with the volumes of drilling fluid required and to maintain adequate annular velocity in the borehole in ensure cuttings remain in suspension in the drilling fluid until the fluid exits the borehole.
6.9 Drilling Fluids Mixing and Separation System

6.9.1 To enable continuous drilling and reaming operations an appropriately sized drilling fluids mixing system shall be utilised to handle with the fluid volumes required.

6.9.2 If a separation (recycling) system is to be used it must be adequately sized to handle the through-put of the drilling fluid so continuous drilling and reaming operation can be maintained.

6.9.3 The separation system must be complete with screens and hydro - cyclones to separate the solids from liquid. If required, the Contractor is to provide a centrifuge to further separate the solids from liquids.

6.10 Lifting Plant

6.10.1 Lifting plant is to be appropriately employed by the Contractor. The Contractor is to ensure that experienced personnel with the required certificate of competency operate the lifting equipment at all times. All crane operation is to be in accordance to AS 2550 Cranes, hoists and winches Safe Use.

6.10.2 In the case where the Contractor chooses to use an excavator to lift plant and materials the hydraulic cylinders must be fitted with burst protection valves to the Australian Standard: AS 1418 Cranes, Hoists and Winches.

7. Project Execution

7.0.1 The Contractor shall maintain control of site operations at all times. The Contractor has ultimate responsibility for site safety, the environment, quality workmanship and the satisfactory completion of the work as authorised under the Contract.

7.1 Site Setup

7.1 The Contractor is to set the drill entry and exit sites up in accordance with the approved site layout drawings which as a minimum must cover the following key aspects:

- Temporary access;
- Perimeter fencing in the allowed location;
- Site topsoil stockpile complete with erosion and sediment control;
- Entry and exit points;
- Pedestrian walkways and appropriate exclusion zones around cranes or moving plant;
- Equipment locations and movement zones;
- Any underground or overhead power lines and the appropriate exclusion zone;
- Shaft / pit locations;
- Traffic guidance systems.

7.2 The Contractor shall follow the site layout submitted to the Principle. Any changes to site layout are to be documented and approved by the Principle.
7.3 **Existing Services**

7.2.1 All existing services shall be located prior to works commencing in accordance with the requirements of Unitywater *Specification for Civil and Earth Works* (Pr9902). Services may require visual confirmation pending proximity to works.

7.2.2 Existing services location and pot holing shall be included and detailed in the relevant ITP with hold points. The contractor shall also produce a procedure for locating existing services.

7.4 **Dilapidation Reports**

7.3.1 The Contractor is responsible for all pre-construction and post-construction property assessments. These assessments shall be a means of determining whether, and to what extent, damage has resulted from the Contractor’s operations during the Works. Any damage identified shall be made good at the Contractor’s expense.

7.3.2 As a minimum the dilapidation reports shall capture:

- All work sites and any surrounding area likely to be impacted by the construction activities, including heavy vehicle traffic,
- A minimum distance of 3x the depth of any excavation measured perpendicular to its perimeter,
- Any area within the settlement trough or zone of influence as defined by the Contractors prediction of ground settlement.
- The report must capture the condition of all aspects of the natural and built environment within the nominated areas, including but not limited to inside buildings, public utilities and plant, roadways and landscaping.

7.3.3 The Contractor shall be responsible to identify any critical structures relevant within 10m or less proximity of proposed HDD works. Critical Structures shall represent a hold point in the Contractors relevant ITP. Critical structures shall include but not limited to:

- Bridges;
- Tunnels;
- Buildings and foundations;
- Infrastructure assets and associated structures.

7.5 **Monitoring and Reporting**

7.4.1 A reporting and auditing schedule must be prepared as part of the approvals process prior to commencing the Works.

    During the HDD works the Contractor is to provide records as listed in

7.4.2 **Table 10** below.
Table 10 – Technical HDD Information Records

<table>
<thead>
<tr>
<th>HDD Record / Report</th>
<th>Included Information</th>
<th>Handover Frequency / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig Log (Pilot, Reaming and Conditioning)</td>
<td>Rod time. Torque and carriage forces. Geology and fluid comments (returns / losses).</td>
<td>Inspection as and when required during drilling.</td>
</tr>
<tr>
<td>Steering Log</td>
<td>Azimuth, length and inclination.</td>
<td>Inspection as and when required during drilling. Submission at end of the pilot hole phase.</td>
</tr>
<tr>
<td>Pipe Pull Back Logs (Casing and Carrier)</td>
<td>Rod time. Torque and carriage forces. Fluid comments.</td>
<td>By noon the next day after completion of pull back operation.</td>
</tr>
<tr>
<td>Filling and Pre-Hydro Test Logs</td>
<td>Water quantity, times and pressure.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Filling and Post-Hydro Test Logs</td>
<td>Water quantity, times and pressure.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Grouting Logs (If required)</td>
<td>Grout quantity, times and pressure.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Plotted Pilot Hole As-built</td>
<td>Plotted as-built bore path relative to the designed and planned bore path.</td>
<td>Completion of pilot hole.</td>
</tr>
<tr>
<td>Welding Logs</td>
<td>Welder, weld type, number, date, if tested and rods used.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Resources</td>
<td>Details of plant materials and labour</td>
<td>By noon the next day.</td>
</tr>
</tbody>
</table>

7.6 General Earthworks

7.5.1 General earthworks requirements shall conform to the requirements of the Unitywater Specification for Civil and Earth Works (Pr9902).

7.5.2 As a minimum all excavations will be backfilled and compacted to 95% Standard Compaction (AS1289.5). Landscaping will be restored to its original condition. At the end of the works, temporary shaft(s), pit(s) and all other temporary structures are to be removed to a level of 1.5m below finished site surface level. All HDD spoil, slurry and drilling fluids shall be disposed of by the Contractor to approved sites.

7.7 Drilling and Pipe Installation

7.6.1 Drilling Water

7.6.1.1 Unless otherwise noted in the Project Specific Specification the contractor shall be responsible for the supply, transport and storing of water required for drilling and hydrostatic testing.
7.6.2 Pipe Welding and Jointing - General

7.6.2.1 Butt welds are to be used for all pipe joints of all pipe materials that are pulled through the HDD alignment. Other methods of jointing including electrofusion, clamped or proprietary bell/spigot type joints are not permitted without written approval from the Superintendent’s Representative.

7.6.2.2 Pipe specifications, weld procedures and welder qualifications are to be provided to the Superintendent’s Representative for approval prior to procurement of any materials or commencement of the works.

7.6.2.3 Pipe handling shall be only carried out by certified lifting plant and equipment. Care shall be taken with pipe rollers ensuring that they are fit for purpose, in good working order and positioned correctly for the intended task.

7.6.3 Pipe Welding and Jointing – HDPE Pipe

7.6.3.1 Jointing of HDPE pipes is to be conducted in accordance with Specification for Pressure Pipe Construction (Pr9904) Section 8.8 Jointing PE Pipes and Fittings.

7.6.3.2 HDPE welding is to be conducted only by pre-qualified welders. HDPE butt welding quality checks are to be completed in accordance with Specification for Pressure Pipe Construction (Pr9904) Quality Assurance systems and AS 2033 Installation of Polyethylene Pipelines.

7.6.4 Pipe Welding and Jointing – PVC Pipe

7.6.4.1 PVC pipe is to meet the material specifications required by the referenced standards and be of the fusible type, supplied with a manufacturer’s recommendation for butt fusion welding.

7.6.5 Pipe Welding and Jointing – Steel Casing

7.6.5.1 To provide extra stability to the borehole, or as a requirement of a third party, steel casing may be used.

7.6.5.2 The steel pipe is to be welded by certified welders pre-qualified to undertake the weld procedure for structural welds.

7.6.5.3 The yield strength and wall thickness of steel casing is to be chosen by the Contractor to take into account the buckling, bending and tensile forces that it will be subjected to during installation.

7.6.5.4 The Contractor is to verify that there is no weld slag left internally at the joints that will damage the carrier pipes during installation.

7.6.6 Pipe Welding and Jointing – Pipe Stringing

7.6.6.1 The carrier and / or casing pipes, if possible, shall be strung out and welded in one (1) long string at a location to facilitate ease of insertion into the borehole. All precautions shall be taken to ensure the pipe string is protected from damage.

7.6.6.2 If multiple strings are required, based on constraints of the site, a golden weld procedure shall be submitted and heightened criteria applied to ensure minimisation of potential risks.
7.6.6.3 Pipe rollers if utilised shall be positioned correctly to ensure pipe is not damaged and fit for purpose.

7.6.7 Drilling Fluid Management

7.6.7.1 The Contractor is to use drilling fluid to efficiently support the borehole and carry the cuttings away in solution to the surface. The drilling fluid is to be water-based bentonite or polymer that is environmentally safe and conforms to the relevant legislation.

7.6.7.2 All chemical fluid additives are to be inert to the environment and the Contractor is to maintain an up to date chemical register and have SDS documents available onsite.

7.6.7.3 The Contractor is to provide a Fluid Management procedure which shall include but not limited to:
   a. Drilling Fluid program
   b. Management of cuttings including volume on site, specialised site storage
   c. Management of drilling fluid displacement during pullback (expected volumes per time, proposed storage)
   d. Safety Data Sheet(s)

7.6.7.4 If the Contractor proposes to use a separation system it must be adequately sized to handle the throughput of the drilling fluid. The separation system must be complete with screens and hydro cyclones to separate the solids from liquid. If required the Contractor is to provide a centrifuge to further separate the solids from liquids.

7.6.7.5 In the event that a drilling fluid hydro fracture occurs, the Contractor shall cease drilling and notify the Superintendent’s Representative.

7.6.7.6 The contractor shall have a contingency plan in place in the advent that a hydro fracture of drilling fluid occurs. The contingency plan shall address the following:
   • Responsibilities;
   • Monitoring;
   • Emergency response procedures;
   • Equipment available for containment control and clean up;
   • Proposed methods for clean-up;
   • Procedure for continuation of drilling.

7.6.7.7 Drilling fluids and drill spoils shall be disposed off-site to an approved location. Details of the nominated disposal site are to be submitted to the superintendent for approval.

7.6.7.8 All relevant legislation shall be adhered to.

7.6.8 Drilling, Reaming, Conditioning

7.6.8.1 The Contractor will incrementally perform drilling tasks to prepare the bore hole for the pipe pull. The process should follow the following stages:
   • Drill and steer the pilot hole along the approved alignment;
• Ream the pilot hole out to the specified diameter per the Contractor’s design and guide shown in Table 11.
• Condition and clean the borehole until the Contractor and the Superintendent’s Representative is satisfied that the hole is clean and ready for the casing pipe pull.

7.6.9 Pilot Hole

7.6.10.1 In the event that the pilot does deviate from the bore path by more than the requirements of Table 12. The Contractor shall notify the Superintendent’s Representative and the Superintendent’s Representative may require the Contractor to pull-back and re-drill from the location along the bore path prior to the deviation.

7.6.9.1 Drill bits are to be in good working order and appropriate to the ground conditions indicated.

7.6.9.2 The Contractor shall provide details on:
  • Tooling selection and justification including layout configuration sketch
  • Auxiliary equipment and support

7.6.10 Reaming

7.6.10.2 Upon successful completion of pilot hole and acceptance by the superintendent, the Contractor (if required) shall ream the bore hole, using the appropriate HDD tooling, to a size recommended by Table 11 below.

7.6.10.3 Reaming tools are to be in good working order and appropriate to the ground conditions indicated.

7.6.10.4 The Contractor shall provide details on proposed tool selection and previous operating history if applicable.

Table 11 – Product Diameter and Reamed Diameter Recommended Relationship (NASTT 2008)

<table>
<thead>
<tr>
<th>Product Diameter</th>
<th>Reamed Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 8” (&lt; 200mm)</td>
<td>Diameter of product + 4” (100mm)</td>
</tr>
<tr>
<td>8” – 24” (200 – 600mm)</td>
<td>Diameter of product x 1.5</td>
</tr>
<tr>
<td>&gt; 24” (&gt; 600mm)</td>
<td>Diameter of product + 12” (300mm)</td>
</tr>
</tbody>
</table>

7.6.11 Hole Conditioning

7.6.11.1 Conditioning of the borehole will be conducted when the reaming has been completed. This operation is to remove any excess cuttings still left within the hole and to improve the condition and stability of the borehole and the borehole walls.

7.6.11.2 Conditioning reaming tools are to be in good working order and appropriate to the ground conditions indicated.

7.6.12 Pipe Pullback

7.6.12.1 At the completion of the hole opening and the hole conditioning, the Contractor will commence the casing/carrier pipe pullback. The pipe pullback is a critical operation and the following must be controlled by the Contractor:
• If the Contractor’s design requires the casing pipe to be filled for a preferred buoyant reaction, then the Contractor is to plan and execute this process seamlessly;

• If the Contractor needs to work continuously during this operation, the Contractor is to seek extended working hours from the Superintendent’s Representative 6 weeks in advance of commencing the operation. Appropriate lighting will need to be provided;

• Measures need to be taken to ensure that the pipe is not damaged during pullback such as the use of pipe rollers / sandbags if required;

• The Contractor is to plan for the handling, storage and disposal of the displaced drilling fluid during pipe pullback.

7.6.12.2 The Contractor is required to supply a Pullback plan to include by not limited to:

• Proposed start and finish times;

• Ballast pipe install methodology (if applicable);

• Ballast water volume calculations and supply rate (if applicable);

• Ballast water storage (if applicable);

• Displacement of drill fluid calculations;

• Truck movements;

• Approved dumping locations;

• Resources required;

• Pullback restraint design to have RPEQ Certification.

7.6.12.3 In the event that pipe becomes stuck, the Contractor will cease pulling operations to allow any potential hydro-lock to subside and will then recommence pulling operations. If the pipe remains stuck, the Contractor will notify the Superintendent’s Representative.

7.6.13 Pipe Damage

7.6.13.1 Inspection of the pipe exterior “scored” condition shall be undertaken prior to pullback operations taking place and on completion of the pullback operation.

7.6.13.2 The pipe shall be pulled at least 3m clear of the entry pit location so that the condition of the pipe can be visually inspected.

7.6.13.3 When there is any indication that the installed pipe has sustained damage, the Contractor shall stop all work, notify the Superintendent’s Representative and investigate the damage. The Superintendent’s Representative is allowed up to 72 hours to approve or determine if the pipe installation is not in compliance with the specifications.

7.6.13.4 Product pipe damage greater than 10% wall thickness shall be replaced as per PIPA POP-005 and AS 2666.2. Replaced sections shall be subject to pressure testing requirements and actions taken to resolve occurrence from repeating.

7.6.14 Tracer Wire

7.6.14.1 For any installations involving HDPE or fusible PVC pipe, a continuous tracer wire is to be installed with the pipe when it is inserted into the borehole. The tracer wire shall
be in accordance with the SEQ WS&SD&C Code Accepted Civil Products and Materials List.

7.6.15 Drill Pipe

7.6.14.2 The Contractor is to supply drill pipe that is in good condition. The drill pipe is to be operated according to the manufacturer’s guidelines. The Contractor is to ensure that the drill pipe conforms to its allowable bending radius at all times.

7.6.16 Bottom Hole Assembly (BHA)

7.6.16.1 The Contractor must use fit for purpose downhole equipment. The equipment must be supported by the manufacturers or local agents. All downhole equipment must be accompanied with service records/reports and proofs that it is in good working order and any threaded joints are torqued to the appropriate makeup torque.

7.6.16.2 Pulling heads and swivels should be designed to a maximum operating tensile load with an appropriate factor of safety. These limitations are to be provided to the Superintendent’s Representative via a manufacture’s or approved agent’s report.

7.6.16.3 The Contractor shall supply details on the down hole tooling assembly per profile (pilot, reaming, cleaning and conditioning) with relevant tooling capacity and operating hours.

7.6.16.4 The Contractor shall include a hold point in the relevant ITP for document submission of the proposed tooling and BHA’s.

7.6.17 Grouting

7.6.17.1 Unless nominated in the design, annulus grouting is required. The following elements of the grouting procedure must be assessed:

- Surface settlement;
- Grouting pressure shall not exceed $P_{\text{max}}$ and any pressure limitation on the carrier pipe;
- Pipe buckling from ground and hydrostatic loads;
- Drill path erosion and drainage;
- Resistivity;
- Heat transfer;
- Floatation;
- Permanent operation.

7.6.17.2 The Contractor is to provide a grouting procedure of the annulus between the casing pipe and the carrier pipe for approval. A cementitious material should be used.

7.6.17.3 Grouting of the annulus, management of floatation and thermal reversion, shall be in accordance with the SEQ WS&S D&C Code. Grouting mix design shall be appropriate for the specific pipe materials and site conditions and shall be approved by the superintendent.
7.6.17 The Contractor shall consider a specialist grouting contractor prior to works or justify that personnel on site have the relevant experience and knowledge to perform the grouting.

7.6.17.1 Pigging and gauging activities shall be submitted as part the Contractors pressure testing procedure.

7.6.17.2 At the completion of the carrier pipe pull, the carrier pipes are to be pigged and flushed clean. A number of cleaning passes may be required until clean water remains in the carrier pipes. Pig selection shall be relevant to the pipeline material and confirmed with a pig supplier and/or manufacturer. Cleaning acceptance criteria shall be ≤10mm dust penetration with a low density foam pig for a maximum length of 2km. For sections exceeding 2km an agreed value between Unitywater and the Contractor is to be established.

7.6.17.3 Cleaning pigs shall be numbered, logged, condition noted and comments surrounding debris removed. Any pigging near residents or the general public shall be controlled to ensure material exiting the pipeline is controlled and does not impact the surrounding area. Silencers shall be used when appropriate.

7.6.17.4 When pigging with compressed air, gauges shall be used at both ends with constant communication between launching and receiving ends. No tools shall be used on the pipeline until both ends of the pipeline have confirmed the gauges read 0kPa.

7.6.17.5 The gauging pig is to be sized to the internal diameter of each carrier pipe according to the project specific specification. The Contractor is to complete this work and use a fit for purpose cleaning pig and gauging pig. The gauge plate shall be a minimum 3mm thick, 95% of the internal diameter, segmented and shall be free of defects once received. Location of the gauge plate on the gauging pig is to be at the Contractors discretion. Gauge plate material shall not be able to damage the parent material of the pipeline.

7.6.18 Alignment Tolerances

7.6.18.1 The HDD bore path must follow the approved designed alignment and conform to the allowable tolerances depicted in Table 12 below unless otherwise detailed in the Project Specific Specification.

7.6.18.2 The alignment shall be constructed on the project specific centre lines and agreed to by the Superintendent’s Representative and Principal.

Table 12 – Horizontal Directional Drilling Tolerances
7.7 **Survey**

7.7.1 Construction control points shall be established sufficiently far away from the work so as not to be affected by ground movement caused by the construction operations. Such control points shall be checked regularly against permanent bench marks to ensure the accuracy of the HDD construction is not compromised by ground movement.

7.7.2 **Borehole Alignment**

7.7.2.1 Depending on the length, depth, topography and characteristics of the proposed crossing/s, the Contractor shall adopt one of either walkover, wireline or gyro HDD survey methodologies to guide the borehole along the designed alignment. The proposed methodology and procedure is to be submitted as per the requirements in

<table>
<thead>
<tr>
<th>Design Documentation Submittals</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Profile Design Drawings</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Temporary Works Design – Drill Rig Thrust restraint, shoring systems, pits etc.</td>
<td>4 weeks before work</td>
</tr>
<tr>
<td>Drill Fluid Design and Management Programme</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>

**Table 6.**

7.7.2.2 At least one (1) reading per drill rod is required during the drilling of the pilot hole, registering inclination, heading, length, depth and the orientation of the bent sub. This information shall be recorded on the steering log and be available for inspection of the superintendent as and when required.

7.7.2.3 The Contractor shall ensure proper calibration of all equipment before commencing directional drilling operation and provide proof of calibration documentation to the Superintendent’s Representative.

7.7.3 **As-Built**

7.7.4.1 As-built drawings of Horizontal Directional Drilling shall be prepared, certified as to their accuracy and submitted by the Contractor to the Superintendent’s Representative.

7.7.4.2 The Contractor shall provide the Superintendent’s Representative a complete set of As-Built Plans showing all bores (successful and failed) within 10 calendar days of completing the work.

7.7.4.3 The Contractor shall ensure that the plans are dimensionally correct copies of the Contract plans and include roadway plans and profiles, cross-sections, boring
locations and subsurface conditions as directed by the Superintendent’s Representative. The plans must show appropriate elevations in terms of meters above/below Australian Height Datum (mAHD). As-built plans shall be submitted in CAD (3D DXF/DWG), PDF and hard copy forms.

7.7.4.4 The Contractor shall include bore notes on each plan stating the final bore path diameter, product diameter, composition of any other materials used to fill the annular void between the bore path and the product, or facility placed out of service. If the product is a casing, the size and type of carrier pipe placed within the casing shall be recorded as part of the work.

7.7.4.5 As-Constructed details shall comply with the requirements of SEQ WS&S D&C Code – Asset Information Specification.

8. Testing and Commissioning

8.1 Hydrostatic Testing

8.1.1 Hydrostatic testing of the carrier pipe shall be conducted both before and after insertion of the pipe into the borehole.

8.1.2 The Carrier pipe shall be hydrostatically tested as per Unitywater Specification for Pressure Pipeline Construction (Pr9904).

8.1.3 The Contractor is to engage a NATA certified testing authority to conduct the hydrostatic testing. The test must conform to the Unitywater Specification for Pressure Pipeline Construction (Pr9904).


8.2 Leakage Testing

8.2.1 For specific leakage testing requirements refer to the requirements identified in the specific Scope of Works. This may include vacuum testing.

8.3 Disinfection/Chlorination

8.3.1 When disinfection/chlorination testing is required the test and reports are to be prepared by a NATA certified testing authority in accordance with SEQ WS&S D&C Code. All equipment used in the testing process shall be calibrated in accordance with the relevant standards.

8.3.2 The Contractor’s Chlorination Testing Procedure for disposal of disinfection water shall be in accordance with Water Services Association of Australia (WSAA) Guideline: Dechlorination of Drinking Water to Discharged Waterways, National Guidance for the Urban Water Industry 2019.
9. **Project Completion and Handover**

9.1 Throughout the construction of the project the Contractor is to complete and submit all records mentioned in the above sections of this document. In addition to these documents the Contractor is to submit the As-Built package in hard copy and electronic format.

9.2 The Contractor shall keep records of all trenchless operations, and all such data as directed by the Superintendent’s Representative. These records will form part of the As-Built data. All As-Built records are to comply with the requirements of the SEQ WS&S D&C Code – Asset Information Specification.

9.3 The Contractor is required to submit As-Built records in CAD format. The Contractor must also submit Red Line Drawings detailing all relevant As-Built records. All submitted records are to be approved by the Superintendent’s Representative.

9.4 **Documentation Submittals**

9.4.1 The Contractor shall liaise closely with the Superintendent’s Representative during the documentation of survey work, and shall provide the Superintendent’s Representative with adequate opportunity to verify any measurement or detail the Contractor considers necessary prior to the commencement of reinstatement operations.

9.5 **Post-Construction Dilapidation Report**

9.5.1 The Contractor is responsible for all pre-construction and post-construction property assessments. These assessments shall be a means of determining whether and to what extent, damage has resulted from the Contractor’s operations during the Works.

10. **Principal Representation**

10.0.1 The works under the contract will be delivered with a Technical Advisory Inspector on site to ensure the works are executed safely, in an environmentally friendly manner and to an acceptable quality standard.

10.0.2 The availability and need for onsite Principal Representation will be based on the project size, contract value and project risk and will be outlined in the Project Specific Specification.

10.0.3 The Contractor must allow the Superintendent or their Representative access to the drill cab and all drilling records at any time during the project.

11. **Typical HDD Inspection and Test Plan (ITP)**

11.0.1 The Contractor shall prepare and submit for approval by the Principal at least four (4) weeks prior to the commencement of microtunnelling works, an Inspection and Test Plan (ITP) for the works in accordance with the requirements of the relevant specifications.

11.0.2 Table 13 below details the typical activities that trigger a visual inspection, witness point verification or hold point release. This list is to be used as a minimum guide for
the Contractor to develop their ITP. Items noted with a “C” only need to be addressed for designed critical HDD works.

11.0.3 The Contractor must provide the Principal at least 8hrs notice of a required visual inspection, witness point verification or hold point release.

Table 13 - HDD Inspection and Test Plan

<table>
<thead>
<tr>
<th>Project Elements</th>
<th>Activity</th>
<th>Contractor Responsibilities</th>
<th>Principal Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project and HDD Documentation</td>
<td>Documents required as per CMPR</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Project Plans</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>HDD Procedures</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Safe Work Method Statements</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td>HDD Design</td>
<td>Borehole alignment</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Locate existing services</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Identification of critical structures</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Rig selection and deadman design</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Geology review and discussion</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Fluid design, management and control</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Hydro fracture calculations</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Choice of bottom hole assembly and sizing of bits, reamers and conditioners</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Steering technique;</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Casing and casing pipe checks (bending radii, buckling capacity and tensile capacity)</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Pipe pulling load calculations.</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Temporary works design - RPEQ Certification</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Contractor and Principal Design Collaboration 20%</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
<tr>
<td></td>
<td>Contractor and Principal Design</td>
<td>☐☐☒</td>
<td>☐☐☒</td>
</tr>
</tbody>
</table>
## Contractor Responsibilities

<table>
<thead>
<tr>
<th>Project Elements</th>
<th>Activity</th>
<th>Visual</th>
<th>Witness</th>
<th>Hold</th>
<th>Visual</th>
<th>Witness</th>
<th>Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration 60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDD Site Setup</td>
<td>HDD site set up</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Proposed tooling and BHA’s</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion and sediment controls</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designated spoil sites</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDD Pits</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Drilling, excavation, confined space and hot works permits</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling (Pilot, Reaming and Conditioning)</td>
<td>Calibration of survey equipment</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Calibration of rig measuring instruments</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Drill pipe checks conforming to API Drill Pipe Specification</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill pipe Makeup torque recommendation</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Swivel certification and report</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Assembly of the bottom hole assembly complete with relevant certificates</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspection of rig deadman</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Submission of drilling logs</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>Pipe Stringing and Casing Welding</td>
<td>Welder prequalification for casing and carrier pipes</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Conforming visual and non-destructive welding tests</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Pipe String visual surface inspection prior to pipe Pull Back</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verification that there is no weld slag on the inside of the casing pipe that could cause damage during the carrier pipe pull</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Pull Back</td>
<td>Pullback Plan submitted</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Inspection of the over bend</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>Project Elements</td>
<td>Activity</td>
<td>Contractor Responsibilities</td>
<td>Principal Responsibilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>----------------------------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plans</td>
<td>Visual</td>
<td>Witness</td>
<td>Hold</td>
<td>Visual</td>
<td>Witness</td>
<td>Hold</td>
</tr>
<tr>
<td></td>
<td>Submission of the pipe pull back logs</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Cleaning and Gauging</td>
<td>PIG and water discharge logs documenting volumes, time and pressures</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☜</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Hydrostatic and chlorination testing logs and NATA certificate</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Hydrostatic and Chlorination Testing and Grouting</td>
<td>Grouting installation records (strength, volume and pressures)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☜</td>
<td>☒</td>
</tr>
<tr>
<td>HDD Site Reinstatement, Demobilisation and Completion</td>
<td>Check lists for reinstatement of roads, pits and site</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>Obtain substantial completion certificate</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
Appendix A – Additional Requirements for “Critical” HDD Crossings

As stated in Section 1, in addition to the requirements set out in the document above, the following requirements need to be complied with for crossings deemed as “critical”.

Item numbering below corresponds to the relevant section in the body of this Specification that is to be replaced for critical HDD projects, or a new section that is to be added.

5. Project Preliminaries

5.2 Design

Additional Sub-Clauses

5.2.1 In addition to Temporary Works, the overall design is to be certified by a RPEQ engineer and shall be submitted to the Superintendent’s Representative for review prior to commencement of work.

5.2.2 Hydrofracture, installation load and Pipe integrity calculations shall be carried out and submitted as part of the overall design.

Amendment to Sub-Clauses

5.2.3 In addition to the Design drawing requirements shown in Table 3 the following is also required.

<table>
<thead>
<tr>
<th>Drawing Details</th>
<th>Plan / Elevation</th>
<th>RPEQ Sign Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD Over Bend Details</td>
<td>Plan + Elevation</td>
<td>☑</td>
</tr>
</tbody>
</table>

5.3 Governing Documentation

Amendment to Sub-Clauses

5.3.1 In addition to the work plan requirements shown in Table 4 the following is also required.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement Monitoring Plan</td>
<td>4 weeks before work</td>
</tr>
</tbody>
</table>

5.3.2 In addition to the documentation requirements shown in Table 5 the following is also required.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>4 weeks before work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrofracture Analysis</td>
<td></td>
</tr>
<tr>
<td>Installation Calculations</td>
<td></td>
</tr>
<tr>
<td>Integrity Calculations</td>
<td></td>
</tr>
</tbody>
</table>
6. Procurement

6.5 Personnel

Amendment to Sub-Clause

Alteration to Table 7 Key HDD Personnel Training and experience.

Table 16 – Alternative Table 7: Key HDD Personnel Training and Experience

<table>
<thead>
<tr>
<th>HDD Role</th>
<th>Training / Qualification</th>
<th>Experience in Role (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Min Higher Education Diploma</td>
<td>5</td>
</tr>
<tr>
<td>HDD Supervisor</td>
<td>Rig and fluid training</td>
<td>5</td>
</tr>
<tr>
<td>HDD Driller</td>
<td>Rig and fluid training</td>
<td>3</td>
</tr>
<tr>
<td>HDD Engineer</td>
<td>Min Higher Education Diploma</td>
<td>2</td>
</tr>
<tr>
<td>HDD Steerer</td>
<td>Survey equipment training</td>
<td>2</td>
</tr>
<tr>
<td>HDD Mudman</td>
<td>Fluid training/bore tracking</td>
<td>1</td>
</tr>
</tbody>
</table>

7. Project Execution

7.5 Monitoring and Reporting

Amendment to Sub-Clause

Alteration to Table 9 of Section 7.4 of this document is outlined in Table 16 below.

Table 17 – Alternative Table 9: Technical HDD Information Records

<table>
<thead>
<tr>
<th>HDD Record / Report</th>
<th>Included Information</th>
<th>Handover Frequency / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig Log (Pilot, Reaming and Conditioning)</td>
<td>Rod time, torque and carriage forces. Geology and fluid comments (returns / losses).</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Steering Log</td>
<td>Azimuth, length and inclination. 3 &amp; 10 joint checks. Position to be referenced to the designed alignment.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Rate of Penetration Chart (ROP)</td>
<td>Rod cutting time. Face time. Rig gear / forces. Bit size.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Annular Pressure Graph</td>
<td>( P_{\min}, P_{\max}, ) and ( P_{\text{actual}} )- Bore profile, ground level.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Pipe Pull Back Logs (Casing and Carrier)</td>
<td>Rod time, torque and carriage forces. Fluid comments.</td>
<td>By noon the next day.</td>
</tr>
<tr>
<td>Filling and Pre-Hydro Test Logs</td>
<td>Water quantity, times and pressure.</td>
<td>By noon the next day.</td>
</tr>
</tbody>
</table>
### Alternative Sub-Clause

**7.5.3 Surface Settlement**

**7.5.3.1** Prior to commencing any construction work within the construction site, condition surveys must be undertaken and recorded in the Settlement Management Plan. Where possible the Contractor is to conduct weekly settlement monitoring along the HDD alignment. These results are to be submitted to the Superintendent’s Representative as per Table 17.

**7.6 Drilling and Pipe Installation**

Replace Sub-Clauses 7.6.7 and 7.6.15 with the following

**7.6.7 Drilling Fluid Management**

**7.6.7.1** The Contractor is to use drilling fluid to efficiently support the borehole and carry the cuttings away in solution to the surface.

**7.6.7.2** Fluid design, performance and monitoring are the responsibility of the Contractor. The Contractor is to submit a Fluid Design and Management Procedure that details the design and required functionality of the fluid. The Fluid Design and Management Procedure needs to be approved by the Superintendent’s Representative prior to the commencement of works. The fluid is to be tested a minimum of three times a shift to ensure optimum performance. The Contractor is to record details of all fluid used in the system including quantities of each additive.

**7.6.7.3** The fluid is to optimally perform and is to be tested and verified against the design in the following areas:
- Viscosity;
- pH;
- Fluid weight;
- Gel strength;
• Fluid loss;
• Water hardness;
• Calcium content.

7.6.7.4 The Contractor is to be in close contact with their fluid supplier’s technical department to ensure that optimum performance is established and maintained.

7.6.7.5 The Contractor is to communicate via the Fluid Design and Management Procedure how the fluid design and management will minimise hydrofracture events, hole collapse and hydro-lock.

7.6.7.6 All chemical fluid additives are to be inert to the environment and the Contractor is to maintain an up to date chemical register and have SDS documents available onsite.

7.6.7.7 If the Contractor proposes to use a separation system it must be adequately sized to handle the throughput of the drilling fluid. The separation system must be complete with screens and hydro cyclones to separate the solids from liquid. If required the Contractor is to provide a centrifuge to further separate the solids from liquids.

7.6.7.8 In the event that a drilling fluid hydrofracture occurs, the Contractor shall cease drilling and notify the Superintendent’s Representative.

7.6.7.9 The contractor shall have a contingency plan in place in the advent that a hydrofracture of drilling fluid occurs. The contingency plan shall address the following:
• Responsibilities
• Monitoring
• Emergency response procedures
• Equipment available for containment control and clean up.
• Proposed methods for clean-up.
• Procedure for continuation of drilling.

7.6.7.10 Drilling fluids and drill spoils shall be disposed off-site to an approved location. Details of the nominated disposal site are to be submitted to the superintendent for approval.

7.6.7.11 All relevant legislation shall be adhered to.

7.6.15 Drill Pipe

7.6.15.1 In addition to the requirements of Section 7.6 the Contractor is to supply drill pipe that is in good condition, complete with ultrasonic assessments to demonstrate their condition.

7.6.15.2 The drill pipe is to be assessed against “ANSI/API SPECIFICATION 5DP Specification for Drill Pipe” and a report provided demonstrating conformance. The drill pipe and makeup torques are to be submitted to the Superintendent’s Representative and operated according to the manufacturers guidelines.

7.6.15.3 Drill Pipe management system shall be in place to log operating hours and periodic visual inspections.
The Contractor is to measure the allowable 3 and 10 joint radii for the drill pipe in real time and record it on the daily steering report (as requested in Table 10). The Contractor is to ensure that the drill pipe conforms to its allowable bending radius at all times.

**Additional Sub-Clause**

**7.6.19 Annular Pressure Monitoring**

7.7.19.1 The Contractor’s design must include a theoretical calculation of hydrofracture for each crossing. This calculation is to be graphed against chainage and vertical elevation. The graph is to include plotted lines representing the following parameters:

- The topographic surface;
- The vertical bore hole alignment;
- The minimum pressure required to create fluid returns in the entry pit ($P_{\text{min}}$);
- The maximum allowable pressure ground could withstand without hydrofracturing ($P_{\text{max}}$);
- The Contractor’s design must prove that $P_{\text{min}}$ will remain lower than $P_{\text{max}}$ including a factor of safety allowance of 1.5.

7.7.19.2 During the drilling of the pilot hole the Contractor must plot the actual annular pressure on to the theoretical graph mentioned above in real time. The Contractor is to act accordingly if $P_{\text{min}}$ approaches $P_{\text{max}}$. Measures such as cleaning the hole, reducing the fluid pressure, reducing the rate of penetration (ROP) should be implemented.

7.7.19.3 Evidence of calibration of the pressure sub tool shall be submitted to the Superintendents Representative prior to commencement of the pilot bore or before re-entering the pilot bore if removed.

**7.7 Survey**

**Replace Sub-Clause 7.8.1 with the following:**

7.8.1 Three readings per rod are required during the drilling of the pilot hole, registering inclination, azimuth, length and the orientation of the bent sub. This collected information is to be converted and plotted into a real time As-Built alignment drawing referencing the actual position of the borehole compared with the designed alignment. This plot is to be submitted to the Superintendent’s Representative daily for review as requested in

Table 10.