Specification
For
Electrical Installation at Sewage Treatment Plants
Pr9835
Pr9835 - Specification for Electrical Installation at Treatment Plants

Documents Details
This document is only valid on the day it was printed.

Version Review

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date issued</th>
<th>Reviewed by</th>
<th>Approved by</th>
<th>Date approved</th>
<th>Revision type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>30/7/2014</td>
<td>T. Stewart</td>
<td>-</td>
<td>Date approved</td>
<td>Creation of document</td>
</tr>
<tr>
<td>0.2</td>
<td>30/04/2015</td>
<td>J. Duncan</td>
<td>-</td>
<td></td>
<td>Collaborative redrafting of document</td>
</tr>
<tr>
<td>0.3</td>
<td>3/07/2015</td>
<td>J. Duncan</td>
<td>TSC/D. Fillmore</td>
<td>3/07/2015</td>
<td>Changes to VSD requirements</td>
</tr>
<tr>
<td>1.0</td>
<td>19/02/2016</td>
<td>T. Stewart</td>
<td>S.Barnes</td>
<td>27/04/2016</td>
<td>Finalisation of general review</td>
</tr>
</tbody>
</table>

Written Direction Control

<table>
<thead>
<tr>
<th>Document Sponsor</th>
<th>Technical Standards Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Author (Owner)</td>
<td>Manager Capital Delivery, SIS</td>
</tr>
<tr>
<td>Subject Matter Expert</td>
<td>Electrical Project Manager, Capital Delivery (SIS)</td>
</tr>
<tr>
<td>References</td>
<td>Refer to Section 3 of this document</td>
</tr>
</tbody>
</table>
Contents

1. Purpose ... 13

2. Scope ... 13

3. References .. 13
 3.1. General... 13
 3.2. Applicable Legislation and Regulation ... 13
 3.3. Codes of Practice (ratified by Legislation) ... 14
 3.4. Codes of Practice (not ratified by Legislation) ... 14
 3.5. International and Australian Standards ... 14

4. Definitions/Abbreviations .. 15

5. Design Requirements ... 16
 5.1. General Requirements .. 16
 5.1.1 General Design Aspects .. 16
 5.1.2 General Site, Service Conditions, Design Life Aspects 17
 5.1.3 Equipment and Fault Co-ordination ... 18
 5.1.4 Design for Safety .. 19
 5.1.5 Mandated Equipment .. 19
 5.1.6 Standardisation ... 19
 5.1.7 Access to Equipment .. 19
 5.1.8 Design Review .. 20
 5.1.9 Design Verification .. 20
 5.1.10 Hazardous Materials ... 20
 5.1.11 Hazardous Areas .. 20
 5.1.12 Environmental Design Aspects ... 21
 5.1.13 Corrosion Protection ... 21
 5.1.14 Provision for Handling Equipment ... 22

 5.2. Electrical Supply and Power Distribution .. 22
5.2.1 Power Source ... 22
5.2.2 Voltages .. 22
5.2.3 Power Supply Quality .. 23
5.2.4 Power System Protection .. 23
5.2.5 Power Supply Metering ... 24
5.2.6 Equipment Isolation .. 24
5.2.7 Power Recovery ... 25

6. Installation Requirements .. 25

6.1. Master Keying ... 25
6.2. Equipment, Quality of Materials and Workmanship ... 25
6.3. Wiring Systems (WS) .. 26
6.3.1 Protection from Fire, Sun and Mechanical Damage 26
6.3.2 Cables and Conductors - General ... 26
6.3.3 Low Voltage Power Cables ... 27
6.3.4 Variable Speed Drive Cables (VSDs) .. 27
6.3.5 Submersible Cables .. 27
6.3.6 Control Cables .. 27
6.3.7 Instrumentation Cables ... 28
6.3.8 Communications/Data Cables .. 28
6.3.9 Optical Fibre Cables ... 29
6.3.10 Instrument Sensor Cables .. 30
6.3.11 Underground Installation – Cable in Conduit ... 30

6.4 Terminations and Connections ... 30
6.4.1 Terminations ... 30
6.4.2 LV Terminations .. 32
6.4.3 Cable Glands .. 32
6.4.4 Power Circuit Connections .. 32
6.4.5 Numbering of Cables and Wires ... 33

6.5 Pits ... 33
6.5.1 Construction .. 33
6.5.2 Minimum Size ... 33
6.5.3 Installation ... 34

6.6 Conduits ... 34
6.6.1 General ... 34
6.6.2 Surface Run .. 34
6.6.3 Cast in Concrete ... 35
6.6.4 Metallic Conduit .. 35
6.6.5 uPVC Conduit ... 35
6.6.6 Flexible Conduit .. 36
6.6.7 Cable Ladder .. 36

6.7 Cable Installation .. 37
6.7.1 General ... 37
6.7.2 Process Plant and Switchroom ... 38
6.7.3 Wiring Method ... 39
6.7.4 Support and Protection ... 39
6.7.5 Segregation .. 39
6.7.6 Cable Slack ... 40
6.7.7 Single Core Cables ... 40

7. Switchboards and Motor Control Centres ... 40
7.1. Design – Main Switchboards ... 40
7.1.1 General ... 40
7.1.2 Location .. 40
7.1.3 Dimensions and Provision for Handling .. 41
7.1.4 Future Expansion ... 41
7.1.5 Internal Separation .. 41
7.2. Design – Motor Control Centre ... 41
7.2.1 General ... 41
7.2.2 Location .. 42
7.2.3 Dimensions and Provision for Handling .. 42
7.2.4 Future Expansion ... 42
7.2.5 Internal Separation .. 43
7.3. Switchboard Construction Details .. 43
Pr9835 - Specification for Electrical Installation at Treatment Plants

7.3.1 Switchboard Layout ... 43
7.3.2 Spare Capacity .. 43
7.3.3 Metal Work – Internal Switchboards 43
7.3.4 Metal Work – External Switchboards 44
7.3.5 Metal Work – Doors ... 44
7.3.6 Escutcheons .. 44
7.3.7 Covers .. 44
7.3.8 Switchboard Requirements - General 45
7.3.9 Distribution Boards ... 45
7.3.10 Programmable Controller and Instrument Enclosures 46
7.3.11 Cable Zones .. 46
7.3.12 Gland Plates .. 47
7.3.13 Plinth .. 47
7.3.14 Paint Treatment of Switchboards ... 47
7.3.15 Sealing .. 48
7.3.16 Shrouding ... 48
7.3.17 Equipment Mounting ... 48
7.3.18 Busbars .. 49
7.3.19 Main Circuit Rating and Temperature Rise 49
7.3.20 Incoming Feeder ... 50
7.3.21 Short Circuit Performance ... 50
7.3.22 Arc Containment Performance .. 51
7.3.23 Switchboard Equipment ... 51
7.3.24 Power Meters ... 51
7.3.25 General Circuit Breakers .. 52
7.3.26 Air Circuit Breakers ... 52
7.3.27 Moulded Case Circuit Breakers .. 53
7.3.28 Switchboard Equipment – Current Transformers (CT) 54
7.3.29 Switchboard Internal Wiring ... 55
7.3.30 Wire Duct and Strapping ... 55

8. Control System .. 56
8.1. PLC/SCADA/Control System .. 56
8.1.1 PLC Equipment and Remote IO - Location ... 56
8.1.2 General... 57
8.1.3 Processor ... 57
8.1.4 Reaction to Faults ... 58
8.1.5 Self - Test ... 58
8.1.6 Power Supply ... 58

9. Instrumentation Technical Specifications .. 59

9.1. General Technical Requirements .. 59
9.1.1 General ... 59
9.1.2 Accuracy ... 60
9.1.3 Circuits and Components ... 60
9.1.4 Field Instrumentation .. 61

9.2. Flow ... 62
9.2.1 Volumetric Flow – Differential Pressure ... 62
9.2.2 Volumetric Flow – Magnetic Flow Meters ... 64
9.2.3 Volumetric Flow – Other ... 65
9.2.4 Mass Flow – Coriolis ... 65

9.3. Flow Switches .. 65

9.4. Level .. 65
Level Sensors (Multiple / Single Point Conductivity) 69

9.5. Pressure .. 71

9.6. Temperature ... 72

9.7. Analysers .. 75
Submersible Sensor Probe ... 78
In-line Sampling Analyser ... 78

9.8. Proximity Sensors .. 79

9.9. Recommended Spares ... 79

10. Motor Starters .. 79
10.1. General.. 79
10.2. Electronic Motor Protection Relays ... 80
10.3. Soft Starters .. 81
10.4. Variable Speed Drive Starters ... 81
10.5. Variable Speed Drive External to MCC .. 82
10.6. Variable Speed Drive - Performance .. 82
10.7. Variable Speed Drive - Control .. 83
10.8. Variable Speed Drive - Indication ... 83
10.9. Variable Speed Drive – Integral Protection 83
10.10. Variable Speed Drive - Harmonics .. 84
 10.10.2 Harmonics and EMC ... 84
10.11. Variable Speed Drive – Power Factor .. 84
10.12. Variable Speed Drive – Electromagnetic Disturbance 85
10.13. Variable Speed Drive - Chokes ... 85
10.14. Variable Speed Drive – Circuit Protection 85
10.15. Variable Speed Drive - Features .. 85

11. Motors .. 86
 11.1. Electrical Requirements ... 86
 11.1.1 Design .. 86
 11.1.2 Performance .. 86
 11.1.3 Voltage and Frequency ... 86
 11.1.4 Duty and Starting ... 86
 11.1.5 Enclosures .. 87
 11.1.6 Insulation – General Use Motors .. 87
 11.1.7 Insulation – Submersible Motors .. 88
 11.1.8 Winding Protection/Thermistors ... 88
 11.1.9 Anti-Condensation Heaters .. 88
 11.1.10 Efficiencies ... 89
 11.1.11 Bearings ... 89
 11.1.12 Shaft .. 90
 11.1.13 Direction of Rotation .. 90
 11.1.14 Noise .. 90
 11.1.15 Vibration .. 90
 11.1.16 Painting .. 90
 11.1.17 Rotor Construction ... 90
 11.1.18 Name Plate ... 90
 11.1.19 Hazardous Area Motors .. 91

12. Field Equipment .. 91
 12.1. General ... 91
 12.2. Mounting of Instruments and Enclosure 91
12.3. Local Control Stations ... 92
12.4. Junction Boxes .. 93

13. Light and Power ... 93
13.1. General .. 93
13.2. Lights - General ... 93
13.3. External Plant Area Lighting ... 94
13.4. Lighting Control .. 94
13.5. Interior Lighting ... 95
13.6. Luminance Levels ... 95
13.7. Emergency Lights .. 96
13.8. Power ... 96
13.8.1 General Purpose Outlets ... 96

14. Uninterruptible Power Supply (UPS) ... 96
14.1. General .. 96
14.2. UPS System ... 97
14.2.1 General .. 97
14.2.2 Parallel Operation ... 97
14.2.3 System Rating ... 98
14.2.4 Supply System ... 98
14.2.5 Environment ... 98
14.2.6 Noise ... 98
14.2.7 Interference Protection ... 98
14.3. Components of UPS ... 99
14.3.1 Rectifier/Battery Charger ... 99
14.3.2 Inverter .. 99
14.3.3 Controls and Protection ... 100
14.3.4 Static Bypass Switch .. 100
14.3.5 Internal Maintenance Bypass ... 100
14.3.6 Bypass Line Conditioner ... 101
14.3.7 Batteries ... 101
14.3.8 External Bypass (Maintenance Bypass Switch) 102
14.3.9 Internal Devices ... 102
14.3.10 Maintenance ... 102
14.3.11 Panel Construction ... 102

General ... 102

Construction .. 102
Gland Plates .. 103
Panel Wiring ... 103
Terminal Strips .. 103
Earthing ... 103
Lifting Lugs ... 103
Painting and Protective Coatings .. 104

14.4. UPS Normal Mode ... 104
14.5. UPS Emergency Mode ... 104
14.6. UPS Bypass Mode .. 104
14.7. UPS Down-graded Mode ... 104
14.8. Remote Monitoring and Alarms ... 105
14.9. Ethernet Communication ... 105

15. Power Factor Correction .. 105
15.1. General .. 105
15.2. Capacitors ... 106
15.3. Enclosures .. 106
15.4. Labelling ... 106
15.5. Earthing .. 106
15.6. PFC Controller ... 107
15.6.1 Control System Requirements .. 107
15.6.2 PFC Control Panel .. 107
15.6.3 Alarm and Trip Conditions ... 107

16. Earthing ... 108

17. Active Harmonic Filters .. 110
 17.1 General ... 110
 17.2 Type and Arrangement .. 110
 17.3 Enclosures .. 111
 17.4 Mode of Operation ... 111
 17.5 Filtering Characteristics ... 111
 17.6 Reactive Power Compensation ... 111
 17.7 Heat Losses/Power Dissipation ... 112
 17.8 AHF Protection .. 112
 17.9 Capacitors ... 112

18. Labelling .. 112
 18.1 General... 112
 18.1.1 Protection and Marker Tape .. 113
 18.1.2 Cable Markers .. 114

List of Tables
Table 1 - Design Life of Equipment ... 17
Table 2 - Electrical Supply Requirements .. 22
Table 3 - Standard Voltages ... 23
Table 4 - Minimum Protection Functions ... 24
Table 6 - ACB Classification Characteristics .. 52
Table 7 - MCCB Classification Characteristics ... 53
Table 8 - Measurement CT Requirements ... 54
Table 9 - Wire Colour Code ... 55
Table 11 - Motor Starter Characteristics .. 79
Table 5 - Luminance Levels ... 95
Table 10 - Label Letter Height ... 113

List of Figures
No table of figures entries found.
List of Annexes

Appendix 1 - Mandated Equipment List...59
1. Purpose

1.0.1 The purpose of this Electrical Specification is to define Unitywater requirements for manufactured electrical equipment and electrical installation works for Electrical Fixtures at Sewage Treatment Plants (STPs).

1.0.2 The Specification defines quality, performance, reliability, durability, safety and appearance requirements for these installations.

2. Scope

2.0.1 This Specification applies to both complete and partial electrical design and installation works at Unitywater’s STPs. This includes, but is not limited to, the following:

- Electrical, instrument and control system design and documentation, preparation of workshop drawings, as constructed drawings, inspection and test plans, etc.;
- Design, supply and installation of all electrical switchboards, control panels and local control stations;
- Supply and installation of all electrical cabling, including power, control, fibre optic, data and communication, and cable supports, including cable ladder and conduit;
- Supply and installation of all electrical equipment including test results;
- Supply and installation of PLC/SCADA and site control networking equipment; and
- Electrical Hazardous Area Certification and verification documentation.

3. References

3.1. General

3.1.1 All design, equipment and workmanship shall conform to the most recent requirements of relevant local, State and Commonwealth statutory requirements and applicable, current Australian Standards.

3.1.2 Where no Australian Standard exists, work shall conform to the most applicable, current IEC Standard.

3.1.3 Where conflict exists between different Codes, Standards or Regulations, the higher requirement shall apply.

3.2. Applicable Legislation and Regulation

The following primary legislation and regulations apply in relation to this Specification:

a. Electricity Act 1994 (Qld);

b. Electrical Safety Act 2002 (Qld);

c. Electrical Safety Regulation 2013 (Qld);

d. Electricity Regulations 2006 (Qld);

e. Work Health and Safety Act 2011 (Qld); and
3.3. Codes of Practice (ratified by Legislation)
Not applicable.

3.4. Codes of Practice (not ratified by Legislation)
Not applicable.

3.5. International and Australian Standards
All designs and equipment shall comply with the current edition of the following standards:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS ISO 1000</td>
<td>The international system of units (SI) and its application</td>
</tr>
<tr>
<td>AS/NZS 1170.2</td>
<td>Structural design actions – Wind actions</td>
</tr>
<tr>
<td>AS 1202</td>
<td>Electronic imaging - Forms design optimization for electronic image management (2007)</td>
</tr>
<tr>
<td>AS 1375</td>
<td>Industrial fuel-fired appliances</td>
</tr>
<tr>
<td>AS/NZS 2053</td>
<td>Conduits and fittings for electrical installations – General requirements</td>
</tr>
<tr>
<td>AS 2293</td>
<td>Emergency escape lighting and exist signs for buildings</td>
</tr>
<tr>
<td>AS/NZS 2373</td>
<td>Electric cables - Twisted pair for control and protection circuits</td>
</tr>
<tr>
<td>AS/NZS 2729</td>
<td>Rolling bearings - Dynamic load ratings and rating life</td>
</tr>
<tr>
<td>AS/NZS 3000</td>
<td>Electrical installations (known as the Australian/New Zealand Wiring Rules)</td>
</tr>
<tr>
<td>AS/NZS 3008.1.1</td>
<td>Electrical installations – Selection of cables for alternating voltages up to 0.6/1kV- Typical Australian installation conditions</td>
</tr>
<tr>
<td>AS/NZS 3010</td>
<td>Electrical installations – Generating sets</td>
</tr>
<tr>
<td>AS/NZS 3013</td>
<td>Electrical installations – Classification of the fire and mechanical performance of wiring system elements</td>
</tr>
<tr>
<td>AS/NZS 3080</td>
<td>Information technology - Generic cabling for customer premises (ISO/IEC 11801:2011, MOD)</td>
</tr>
<tr>
<td>AS/NZS 3191</td>
<td>Electric flexible cords</td>
</tr>
<tr>
<td>AS/NZS 3439.1</td>
<td>Low-voltage switchgear and control gear assemblies – Type-tested and partially type-tested assemblies</td>
</tr>
<tr>
<td>AS 3715</td>
<td>Metal Finishing – Thermoset powder coatings for architectural applications</td>
</tr>
<tr>
<td>AS/NZS 5000.1</td>
<td>Electric cables – Polymeric insulated – For working voltages up to and including 0.6/1 (1.2) kV</td>
</tr>
<tr>
<td>AS 60034</td>
<td></td>
</tr>
<tr>
<td>AS 60044.1</td>
<td>Instrument transformers – Current transformers (IEC 60044-1 Ed.1.2 (2003) MOD)</td>
</tr>
<tr>
<td>AS/NZS 60079</td>
<td>Explosive atmospheres</td>
</tr>
</tbody>
</table>
4. Definitions/Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC or ac</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AHF</td>
<td>Active Harmonic Filter</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ATS</td>
<td>Automatic Transfer Switch</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>DC or dc</td>
<td>Direct current</td>
</tr>
<tr>
<td>DOL</td>
<td>Direct Online</td>
</tr>
<tr>
<td>ELV</td>
<td>Extra Low Voltage (as defined in AS/NZS 3000)</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EPS</td>
<td>Expanded Polystyrene</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>HRC</td>
<td>High Rupturing Capacity</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt hours</td>
</tr>
<tr>
<td>kVAR</td>
<td>Kilo volt Ampere reactive</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatts</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
</tbody>
</table>
5. Design Requirements

5.1. General Requirements

5.1.1 General Design Aspects

5.1.1.1 The design shall be carried out in conjunction with the Scope of Works or the Principals Project Requirements or any other overarching document that details the specific requirements for the work.

5.1.1.2 Designs must at least address to the greatest practicable extent the following requirements:

- Safe equipment for construction, commissioning, operation, maintenance repair, removal and decommissioning activities;

Term	**Meaning**
LCD | Liquid Crystal Display
LCS | Local Control Station
LED | Light Emitting Diode
LV | Low Voltage (as defined in AS/NZS 3000)
MCC | Motor Control Centre
MIMS | Mineral Insulated Metal Sheath
MVAC | Mechanical Ventilation in Air Conditioning Systems.
NATA | National Association of Testing Authorities
NDT | Non-Destructive Test
OIP | Operator Interface Panel
PFC | Power Factor Correction
PLC | Programmable Logic Controller
PVC | Polyvinyl Chloride
RFI | Radio Frequency Interference
RTD | Resistance Temperature Detectors
SCADA | Supervisory Control and Data Acquisition
SDI | Single Double Insulated
STP | Sewage Treatment Plant
TDS | Total Dissolved Solids
VSD | Variable Speed Drive
WS | Wiring System
XLPE | Cross-Linked Polyethylene
• The equipment and associated practices shall be cost effective and provide the lowest total cost of ownership and assure any adverse effect on other associated systems is minimised;

• Maintenance and repair requirements shall be able to be carried out in the shortest possible time by Unitywater personnel unless otherwise approved by Unitywater;

• Maintenance and repair requirements must be able to be carried out with maximum available functionality of the plant and associated systems;

• Compliance with Unitywater specifications, practices and legal requirements;

• All equipment provided to Unitywater is fit for purpose and is fully maintainable for the duration of its whole life;

• Provide Unitywater with standardised, streamlined and coherent systems;

• To ensure high reliability, low maintenance and high availability systems; and

 • All electrical systems shall be provided with appropriate isolation facilities in line with statutory requirements, Unitywater specifications and operational requirements to assure that all electrical systems can be safely, readily and appropriately isolated and locked.

5.1.2 General Site, Service Conditions, Design Life Aspects

5.1.2.1 All electrical equipment shall be designed to operate continuously at full load for 24 hours per day 365 days per year with a design life as outlined in Table 1 - Design Life of Equipment below.

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Design Life (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchboards, switchgear</td>
<td>25</td>
</tr>
<tr>
<td>Electrical Cabling</td>
<td>35</td>
</tr>
<tr>
<td>PLC</td>
<td>15</td>
</tr>
<tr>
<td>Other electronic Devices</td>
<td>10</td>
</tr>
<tr>
<td>Diesel Generators (standby rated)</td>
<td>40</td>
</tr>
<tr>
<td>Telecommunications equipment</td>
<td>10</td>
</tr>
<tr>
<td>Fixed radio equipment</td>
<td>10</td>
</tr>
<tr>
<td>Fire monitoring and reporting equipment</td>
<td>20</td>
</tr>
<tr>
<td>Motors (large, > 300 kW)</td>
<td>60</td>
</tr>
<tr>
<td>Motors (medium, >20 kW and < 300 kW)</td>
<td>40</td>
</tr>
<tr>
<td>Motors (small, < 20 kW)</td>
<td>20</td>
</tr>
<tr>
<td>Motor Protection Relay</td>
<td>15</td>
</tr>
<tr>
<td>Variable Speed Drives</td>
<td>15</td>
</tr>
<tr>
<td>Soft Starters</td>
<td>15</td>
</tr>
</tbody>
</table>
5.1.2.2 Electrical equipment shall be designed to operate in following environmental conditions and appropriate de-rating factors shall be applied:

- Coastal environment in close proximity to the ocean;
- Wet conditions;
- Relative humidity up to 95%;
- Ambient temperature up to 45°C;
- Cyclone Region as per AS/NZS 1170.2; and
- Temperature rises due to solar radiation and heat generated by the equipment itself.

5.1.2.3 Particular attention shall be paid to high corrosion resistance for all externally mounted equipment. Corrosion resistance and protection shall ensure the life expectancies listed in **Table 1 - Design Life of Equipment** are achieved or bettered.

5.1.2.4 All main switchboards and all motor control centres shall be installed inside enclosed buildings/switchrooms.

5.1.2.5 Distribution boards shall be installed within enclosed buildings/switchrooms.

5.1.2.6 Switchrooms shall be air conditioned under normal operations. However, in the event of failure of the air conditioning system, all equipment within switchrooms shall be capable of continued operation at the maximum expected ambient temperature and relative humidity.

5.1.2.7 Air conditioning systems within switchrooms shall be designed such that if one unit fails the remaining units can maintain temperature to the range of 25-30°C.

5.1.2.8 All STPs shall have backup generating sets capable of supplying the load for the entire site for periods of time when there are power outages. The generating set(s) shall be connected to an ATS and shall automatically switch from main supply to backup supply when there is a power outage. The power supply shall switch back to mains supply once power has been restored.

5.1.3 **Equipment and Fault Co-ordination**

5.1.3.1 The design shall ensure that every item of equipment is suitable for operation at the required fault level or is protected by upstream fault limiting or co-ordinating devices.

5.1.3.2 Protective equipment shall be fully co-ordinated so that no item is called upon to break fault current in excess of its fault rating. This shall include control circuit breakers if single phase control is used. Control circuit shall be fault limited to less than 5 kA.
5.1.3.3 Power and control cable protection shall be such that the energy let through by the protective device does not exceed the level permitted for that cable by AS/NZS 3008.1.1.

5.1.3.4 If fault limiting devices or co-ordinated circuit breakers are used, then these shall be fully rated for the fault level specified.

5.1.3.5 Equipment co-ordination shall satisfy the requirements of Type ‘2’ co-ordination between circuit breakers, contactors and backup protection of circuit breakers.

5.1.4 Design for Safety

5.1.4.1 Systems shall be designed and constructed as far as practicable to protect against foreseeable misuse and damage to the facilities and equipment and to extend the safe operation and maintenance of the installations over the duration of the nominated asset life without need of rehabilitation.

5.1.4.2 Due consideration shall be made in the design of the equipment to simplify installation and termination of field cables.

5.1.4.3 All necessary safety facilities and mechanisms shall be installed to assure that there are no exposed live conductors when any switchboard door is open. This is to prevent accidental contact with otherwise exposed live circuits behind doors or hinged panels that may be opened without special tools and also when specifically directed within the Scope of Works or the Principals Project Requirements or any other overarching document that details the specific requirements for the work.

5.1.5 Mandated Equipment

5.1.5.1 The mandated equipment list for electrical, instrumentation and control equipment is outlined in Appendix 1 – Mandated Equipment List of this document.

5.1.5.2 Equipment supplied shall be strictly in accordance with the Mandated Equipment List as detailed in Appendix 1. Where items of electrical equipment to be supplied are not detailed on the equipment list they shall meet the requirements of this specification and shall require the acceptance of Unitywater Electrical Engineering Personnel prior to installation of such equipment.

5.1.6 Standardisation

5.1.6.1 All items of equipment having equal or similar functions shall be of the one manufacturer and of similar appearance, finish, mounting arrangement and the like.

5.1.6.2 Where alternatives of equipment are permitted under this Specification and more than one item is to be supplied, all equipment shall be of the same manufacturer and type.

5.1.7 Access to Equipment

5.1.7.1 All equipment shall be located and installed so that it will be readily and safely accessible for operation and maintenance. Equipment mounted in or above large open vessels (e.g. Clarifier, MBR, etc.) shall be easily and safely accessible without the need for additional equipment.
5.1.7.2 The equipment layout shall provide adequate access for operation with all indicators and instrumentation in easy to read locations.

5.1.7.3 All electrical and instrumentation equipment shall be located to allow unobstructed, easy and safe access for maintenance, removal and replacement of items. Operator interfaces shall be mounted between 1000 mm and 1600 mm above working floor height and junction boxes shall be mounted between 500 mm and 1600 mm above working floor height.

5.1.7.4 Equipment shall be mounted such that it does not obstruct or impede walkways, platforms and other normal areas of access as required by applicable statutes and specifications.

5.1.7.5 Under no circumstances is a design/site layout acceptable that necessitates use of scaffolding or ladders to access any electrical equipment, panels etc. for maintenance or operations once installation is complete.

5.1.8 Design Review

5.1.8.1 Unitywater will carry out a design review for general compliance with this specification and relevant Australian Standards.

5.1.9 Design Verification

5.1.9.1 All designs shall be design checked or verified.

5.1.9.2 The design check or verification shall be undertaken by a professional engineer who has RPEQ Registration from the Board of Professional Engineers Queensland, in the category appropriate to the item being design checked or verified.

5.1.10 Hazardous Materials

5.1.10.1 The following hazardous materials are prohibited and shall not be used in any equipment or packaging:
 - Asbestos;
 - Cadmium or Cadmium Plating;
 - Copper Chrome Arsenate (CCA) Treated Timber; and
 - Polychlorinated Biphenyls (PCB).

5.1.10.2 Approved alternatives to cadmium plating are zinc plating (chromate converted) and stainless steel.

5.1.10.3 Any other hazardous materials used in the design and construction of equipment shall be submitted to Unitywater for approval prior to the items being used.

5.1.11 Hazardous Areas

5.1.11.1 Where hazardous areas have been identified, the detailed design, installation and testing of the hazardous area installation shall be in accordance with AS/NZS 60079 and AS1375.

5.1.11.2 All equipment installed into hazardous areas shall have current Aus Ex, ANZ Ex, or IEC Ex hazardous area compliance certification. ATEX certification alone will
not be accepted. Equipment with ATEX certifications can be considered if the equipment carries an Australian Statement of Conformance from a certified third party laboratory.

- A Hazardous Area Verification Dossier shall be produced (if one does not already exist) or updated, and handed over to Unitywater at the end of installation. The installation shall be approved by an independent certified Hazardous Area Auditor. Hazardous Area Classification drawings shall be RPEQ approved prior to handover. Under Queensland legislation, the design and installation in Hazardous Areas shall be audited by an accredited Hazardous Area Auditor appointed by the Queensland Electrical Safety Office.

5.1.11.3 The punch list items and audit reports prepared by the Hazardous Area Auditor will be provided to the Contractor. The Contractor shall be responsible for rectifying all items identified by the Auditor and related to the Contractor’s scope of work. The rectification methods proposed by the Contractor shall be accepted by Unitywater before the work is executed by the Contractor.

5.1.11.4 The Contractor shall liaise with the Hazardous Area Auditor as required, however all official correspondence shall be provided via Unitywater.

5.1.12 Environmental Design Aspects

5.1.12.1 All designs, plant and equipment shall be arranged and implemented as far as practicable to achieve the following:

- Ensuring that regulatory requirements to which Unitywater is obligated to are complied with sustainably;
- Ensuring that life cycle management aspects and related environmental consequences can be sustainably addressed; and
- Contributing to carbon footprint and energy cost minimisation.

5.1.13 Corrosion Protection

5.1.13.1 All equipment and fixings shall be selected so that it is suitable for the corrosive effect of the environment in which it is installed. The equipment shall provide a service life of at least the periods nominated Table 1 - Design Life of Equipment without excessive maintenance.

5.1.13.2 Where dissimilar metals are installed in close proximity to one another, care shall be exercised to avoid the effects of galvanic corrosion. The components shall be:

- Made from compatible material either inherently sealed from the environment, e.g. stainless steel; or
- Electrically isolated from each other by separation using either:
 - A minimum 3 mm air gap; or
 - A minimum 2 mm of UV resistant, non-hygroscopic material such as rubber, PVC or polythene; or
 - Interstitial spacer.
5.1.13.3 Welding of corrosion-protected surfaces shall not be allowed unless specifically permitted.

5.1.13.4 Stainless steel components shall be thoroughly passivated after welding or being subject to any process that creates an oxide layer.

5.1.14 Provision for Handling Equipment

5.1.14.1 All heavy equipment items supplied to Unitywater shall have provision for lifting, slinging and handling during installation and overhaul or maintenance.

5.1.14.2 All parts normally lifted during periods of maintenance and weighing one tonne or over shall be marked with their weight.

5.1.14.3 Certified Eyebolts and lifting points shall be provided where necessary to facilitate handling and overhaul of the various parts of the equipment.

5.2. Electrical Supply and Power Distribution

5.2.1 Power Source

5.2.1.1 The electrical supply to the installation shall be as detailed in Table 2 - Electrical Supply Requirements below.

Table 2 - Electrical Supply Requirements

<table>
<thead>
<tr>
<th>Electrical Supply Aspect</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Voltage</td>
<td>400V +10%, -6%</td>
</tr>
<tr>
<td>Phases</td>
<td>3 phase and neutral (4 wire)</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz ±1%</td>
</tr>
<tr>
<td>A-Phase</td>
<td>Red</td>
</tr>
<tr>
<td>B-Phase</td>
<td>White</td>
</tr>
<tr>
<td>C-Phase</td>
<td>Blue</td>
</tr>
<tr>
<td>Neutral</td>
<td>Black</td>
</tr>
<tr>
<td>Earth</td>
<td>Green/Yellow</td>
</tr>
</tbody>
</table>

5.2.1.2 The site supply parameters, any specific quality requirements for the site and the maximum demand requirements for the site shall be confirmed with the local supply authority prior to design of the electrical works.

5.2.1.3 The same phase sequence as provided by the local supply authority to sub-mains, switchboards and multi-phase loads shall be adhered to throughout the installation.

5.2.2 Voltages

5.2.2.1 The Unitywater standard voltages shall be as outlined in Table 3 - Standard Voltages below.
Table 3 - Standard Voltages

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Plant Switchboard</td>
<td>400 V AC, 3 Phase + Neutral + Earth. Solidly earthed neutral (MEN system).</td>
</tr>
<tr>
<td>Diesel Generating sets</td>
<td>400 V AC, 3 Phase + Neutral + Earth. Solidly earthed via LV switchboard.</td>
</tr>
<tr>
<td>Motor Control Centres (MCC)</td>
<td>400 V AC, 3 Phase + Neutral + Earth. Solidly earthed neutral (MEN system) only if main switchboard.</td>
</tr>
<tr>
<td>Lighting and Small Power</td>
<td>400/230 V AC, 3 Phase/single phase.</td>
</tr>
<tr>
<td>Motor Contactor Coils</td>
<td>Regulated 24V DC. Positive & Negative</td>
</tr>
<tr>
<td>Motor Control Circuits</td>
<td>Regulated 24V DC. Positive & Negative</td>
</tr>
<tr>
<td>Field Instrument Power Supply</td>
<td>Regulated 24 V DC. Negative connected to instrument earth system.</td>
</tr>
<tr>
<td>Field Control devices and control circuitry external to LV switchboard and control panels</td>
<td>Regulated 24V DC. Positive & Negative</td>
</tr>
<tr>
<td>Telemetry system and radio equipment</td>
<td>Regulated 24V DC. Positive & Negative</td>
</tr>
<tr>
<td>Control Circuits for Safety Systems</td>
<td>Regulated 24V DC. Positive & Negative</td>
</tr>
</tbody>
</table>

5.2.3 **Power Supply Quality**

5.2.3.1 The design shall comply with the local supply authority power quality requirements.

5.2.3.2 The power supply quality requirements shall include voltage disturbance (fluctuations), voltage distortion (harmonics), power factor, negative phase sequence (unbalance) and any other requirements of the local supply authority.

5.2.3.3 The equipment shall be capable of continuous satisfactory operation with normal voltage variations and frequency variations as outlined in Table 2 - Electrical Supply Requirements above.

5.2.3.4 All low voltage switchgear and control equipment shall operate satisfactorily for voltage drops up to 5 % of nominal voltage during normal running conditions and up to 15 % of nominal voltage during motor starting.

5.2.3.5 Electronic circuitry shall be adequately rated and fitted with voltage and current surge protection and have immunity from Radio Frequency Interference (RFI).

5.2.4 **Power System Protection**

5.2.4.1 Electrical equipment shall have a fault rating greater than the fault level at the installation location but shall be not less than the following:

- Three phase Switchboards (less than 400 A) 20 kA, 1 second;
5.2.4.2 The minimum protection functions of the power system are as shown below in Table 4 - Minimum Protection Functions.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Generating set CB</td>
<td>Over Current</td>
</tr>
<tr>
<td></td>
<td>Short circuit</td>
</tr>
<tr>
<td></td>
<td>Earth fault</td>
</tr>
<tr>
<td></td>
<td>Over and under frequency</td>
</tr>
<tr>
<td></td>
<td>Over and under voltage</td>
</tr>
<tr>
<td>Switchboard Incoming CB</td>
<td>Over current</td>
</tr>
<tr>
<td></td>
<td>Short circuit</td>
</tr>
<tr>
<td></td>
<td>Earth fault</td>
</tr>
<tr>
<td></td>
<td>Supply Authority requirements for sites that synchronise</td>
</tr>
</tbody>
</table>

5.2.5 Power Supply Metering

5.2.5.1 Power metering equipment includes:
- Load Break Isolator (rated to the incomer rating);
- Current Transformer (CT) supplied/specified by local supply authority;
- Power meter (electronic, three phase);
- Test links, fuses and connections.

5.2.5.2 For main switchboards an external metering panel shall be provided such that the local supply authority does not need to enter any Unitywater buildings.

5.2.5.3 The metering panel shall be installed in a location in accordance with local supply authority requirements.

5.2.6 Equipment Isolation

5.2.6.1 Full current load break isolation shall be provided at the point of electrical supply to individual electrical equipment and motors. The isolator or circuit breaker shall be pad-lockable in the ‘off’ position.

5.2.6.2 Isolators shall have a minimum duty rating of AC23 and shall be capable of breaking the full locked motor current of the motor or the maximum surge current of other equipment.

5.2.6.3 Where barriers and shrouding are fitted they shall have “Danger xxx Volts” labels fitted where xxx is the supply voltage.

5.2.6.4 All electric motors shall also have a full current load break isolator near the motor for maintenance and isolation purposes. This shall be installed as an integral...
5.2.6.5 All full current load break isolators shall have provision for auxiliary contacts for input into the control system and the control circuit.

5.2.7 Power Recovery

5.2.7.1 After a power outage all equipment shall return to its previous state prior to the power outage including all operational plant and ancillary equipment.

5.2.7.2 When power is restored from a Supply Authority power outage there shall be a seamless transfer from generator supply to mains supply. In this context, seamless transfer is taken to mean no interruption to power supply, i.e. synchronisation with the Supply Authority and a controlled transfer of load to mains supply.

5.2.7.3 All equipment shall return to its normal operating state when planned switching to generator supply occurs and when switching from generator back to main supply. Particular attention shall be paid to MVAC system and fire protection systems within buildings.

6. Installation Requirements

6.1. Master Keying

6.1.1.1 All locks supplied shall be master keyed to the requirements of Unitywater.

6.1.1.2 All equipment of similar nature and type shall be keyed alike.

6.2. Equipment, Quality of Materials and Workmanship

6.2.1.1 All materials shall be new, except where existing equipment is specifically required to be reused and of the best quality and of the best class most suitable for working under the conditions specified. Further, they shall withstand the variations of temperature and atmospheric conditions arising under the working conditions without distortion or deterioration or the setting up of undue stress in any part, and also without affecting the strength and suitability of the various parts for the work that they have to perform.

6.2.1.2 Material having fire and vermin resistant properties shall, as far as practicable, be adopted throughout.

6.2.1.3 Equipment shall be installed so that it has the rating and settings shown on the drawings when the switchboard is in its fully operational and fully loaded condition, i.e. all covers and doors are closed, all circuits are at full load (as defined in this specification) and ambient temperature is at maximum (as defined in this specification).

6.2.1.4 All equipment shall be installed true horizontal or vertical and shall be mounted ‘square’.

6.2.1.5 Cables shall not twist or cross over unnecessarily.

6.2.1.6 Cables shall be tied in neat bundles when installed on cable ladders.

6.2.1.7 Glands shall be of the appropriate size and material.
6.2.1.8 The equipment shall be installed strictly in accordance with the manufacturer’s instructions in all regards, particularly concerning mounting, IP rating, clearances, enclosure sizes, temperature rise and maximum continuous current rating.

6.2.1.9 Equipment shall be securely mounted and braced so that movement cannot occur during operation under normal or fault conditions and so that adjacent equipment is unaffected and personnel operating the equipment are not endangered.

6.3. **Wiring Systems (WS)**

6.3.1 Protection from Fire, Sun and Mechanical Damage

6.6.1.1 WS classifications are described in AS/NZS 3013.

6.6.1.2 All components of the wiring system shall be suitable for the WS classification assigned to the wiring system.

6.6.1.3 All cables exposed to direct sunlight shall have UV stabilised sheathing insulation or shall be covered effectively and appropriately to comply with relevant Australian Standards. Usage of double insulated cables with an outer sheathing of non-UV-stabilized material shall not be accepted.

6.3.2 Cables and Conductors - General

6.3.2.1 All cables shall be new and shall be manufactured in accordance with AS/NZS 5000.1.

6.3.2.2 All cables shall have stranded copper conductors. Single solid strand conductors shall not be accepted.

6.3.2.3 A control or power cable must not contain a mix of LV and ELV voltages. Separate LV control cables and separate ELV control cables shall be installed, in accordance with separation and segregation requirements detailed in section 39.5.

6.3.2.4 All cabling and wiring shall be supplied and installed in accordance with the applicable standards, in particular AS/NZS 3000 and AS/NZS 3008.1.1.

6.3.2.5 Cabling shall be of the size required to meet the current rating and voltage drop requirements of AS/NZS 3000 and AS/NZS 3008.1.1 for the actual circuit loading and method of installation or as specified in project requirements.

6.3.2.6 Cables shall be sized such that the steady state voltage drop on feeders to motors and other loads shall not exceed 3 %, with consideration given to current rating, short circuit rating and fault loop impedance.

6.3.2.7 All cables shall be sized to withstand without damage, the maximum fault level for the duration its protective device takes to disconnect the cable from the power source. Cables shall also be sized to enable the protection to operate correctly.

6.3.2.8 All cables that are to be installed below ground shall be Steel Wired Armoured (SWA). Mains supply single double insulated incomer cables and Variable speed drive cables (see section 6.3.4) are exempt from this requirement.

6.3.2.9 Minimum size shall be:

- Power 2.5 mm² (lighting 1.5 mm²);
- Control 1.5 mm²;
• Instrumentation 1.0 mm² screened (0.5mm² for switchboard internal wiring only).

• PLC I/O 1.0mm² (0.5mm² for switchboard internal wiring only).

6.3.2.10 Power cables installed in below ground conduits shall be de-rated to suit the underground installation.

6.3.3 Low Voltage Power Cables

6.3.3.1 Multicore power cables shall be orange circular, 0.6/1.0kV, with stranded copper conductors, X-90 XLPE insulated and V-90 PVC sheath and comply with AS/NZS 5000. Multicore power cables shall also include an insulated earth continuity conductor which shall be a stranded copper conductor with V-90 PVC sheath.

6.3.3.2 Flexible cords shall be heavy duty, 0.6/1.0 kV, with stranded copper conductors, V-90 insulation, insulated earth continuity conductor and V-90 PVC sheath and comply with AS 3191.

6.3.3.3 Single core power cables shall be black circular, 0.6/1.0kV, with stranded copper conductors, PVC insulation and X90 XLPE sheath and comply with AS/NZS 5000.1

6.3.3.4 Flat cables shall not be utilised.

6.3.4 Variable Speed Drive Cables (VSDs)

6.3.4.1 Variable speed drive cables shall be screened and EMC compliant. These include: Olex Varolex or Versolex or Siemens Protoflex or Triangle EU.

6.3.4.2 Suitable EMC cable glands shall be used.

6.3.5 Submersible Cables

6.3.5.1 Submersible pumps shall be fitted with the pump manufacturer’s approved submersible cable.

6.3.5.2 All submersible cables shall be manufactured in accordance with AS/NZS 3191 and where applicable AS/NZS 5000.1 and shall be rated to a minimum submersion depth of 20 m.

6.3.5.3 Where a submersible pump unit has more than one power cable, then a Grade 316 stainless steel stocking shall be provided for each power cable.

6.3.5.4 All stockings of each submersible pump unit shall be connected together using a Grade 316 stainless steel D shackle of adequate size and rating onto a short single Grade 316 stainless steel wire sling, supported off a single Grade 316 stainless steel cable hook suitably rated and suitably positioned.

6.3.6 Control Cables

6.3.6.1 Control cables shall be black or orange circular, 0.6/1.0kV, multi-core with stranded copper conductors, V-90 PVC insulation and V-90 PVC sheath and comply with AS/NZS 2373.1 and AS/NZS 3147. Multi-core control cables shall also include an insulated earth continuity conductor which shall be a stranded copper conductor with V-90 PVC insulation.
6.3.6.2 Control cable cores shall have white insulation and all cores shall be clearly numbered along the full length of the conductor in accordance with AS/NZ 5000.

6.3.6.3 The following principles shall be applied in allocating control conductors and selecting multicore control cables:

- Wherever practical and while complying with other requirements of this specification, all control conductors/core relating to one item of equipment (irrespective of whether the main item or an auxiliary item) shall be incorporated in the one multicore control cable. In such cases, the cable shall be terminated at a suitably located junction box from which other shorter cables should be installed to the individual connection points;
- Control cables shall have as a minimum three (3) spare control cores. Where cable length exceeds 30 metres or where subsequent installation of additional cables or a larger cable would be difficult or impractical this requirement may be increased;
- Voltage drop shall be taken into consideration in accordance with the requirements of AS/NZS 3000 and AS/NZS 3008.1.1; and
- Wherever practical and while complying with other requirements of this specification, digital and analogue signals shall be separated into separate cables; and input and outputs should be separated into separate cables.

6.3.7 Instrumentation Cables

6.3.7.1 Instrumentation cables shall be ‘Dekoron’ or ‘Instrolex’ instrumentation cable or approved equivalent and shall be of multiple twisted pair construction utilising stranded copper conductors, each with V-90 PVC insulation. Each cable shall include an overall screen and drain wire, have a black V-90 PVC sheath and comply with AS/NZS 2373.2.

6.3.7.2 Instrumentation cables shall have each twisted pair in the cable uniquely identified by either colours or a numbers in accordance with AS/NZS 2373.2.

6.3.7.3 Instrumentation cables shall have as a minimum one (1) spare pair in addition to any specifically specified spare cores or cables. Where cable length exceeds 30 metres or where subsequent installation of additional cables or a larger cable would be difficult or impractical the cable shall have a minimum of 10% spare pairs. Field devices require a minimum of one (1) spare pair only.

6.3.7.4 Cables running to field instruments shall have a circular external profile to enable a proper seal to be provided by the instrument cable gland.

6.3.8 Communications/Data Cables

6.3.8.1 All communications cabling shall be installed strictly in accordance with the manufacturer’s recommendations and shall be suitable for use in an industrial environment.

6.3.8.2 Communication/data cables that are to be installed in below ground conduits/ducting shall be rodent resistant and of a type suitable for underground installation.

6.3.8.3 Ethernet cables and patch cables/leads shall be balanced 100 Ω, 4 Pair, Category 6 Unshielded Twisted Pair cable. All twisted pair cables shall comply with AS/NZS 3080.
6.3.8.4 Ethernet cables and patch cables/leads shall be coloured appropriately as follow:

- SCADA LAN Related cables – Yellow sheathing;
- Control LAN Related cables – Green sheathing;
- Telemetry network (WAN) related cables – Yellow sheathing;
- Corporate LAN/WAN related cables – Blue sheathing; It is expected that patch cables will be used. It is permissible to run Ethernet cabling that has blue sheathing as the backbone of the network which are terminated appropriately (i.e. wall plates) then patch cables utilised with the above colouring. Cabling within switchboards shall comply with these colour codes.

6.3.8.5 Communications cabling shall be installed by an appropriately licenced tradesperson in accordance with AS CA S009 Installation requirements for Customer Cabling.

6.3.9 Optical Fibre Cables

6.3.9.1 Optical fibre cables shall be of the Multimode OM3, 50/125 µm type and comply with AS/NZS 3080, IEC60793-2 and IEC60794-1.

6.3.9.2 Optical fibre cables shall be a minimum of 12 cores.

6.3.9.3 Optical fibre cables that are to be installed between the main functional/operational areas of the STP site and/or are required to pass through any of the main process areas shall be suitable for installation both internal to buildings and external to buildings.

6.3.9.4 Provision of a splice arrangement at the transition between internal and external/process area installation shall not be acceptable under any circumstances.

6.3.9.5 Optical fibre cables shall be suitable for installation externally within buried conduit or cable trench systems including cable pits that are not water tight.

6.3.9.6 Optical fibre cables installed within the confines of a single building and are to be located in areas not normally accessible to personnel may be rated for indoor installation only.

6.3.9.7 Internal to buildings, optical fibre cables shall be installed on cable ladders, trays or within cable ducts as applicable to each application. In such instances, cable ladders, trays and/or ducting must not be exclusive to optical fibre cables and must be able to accommodate other cables.

6.3.9.8 Optical fibre cables shall be of a construction type and duty rating to provide adequate protection in the environment which it is installed and for the intended application. All fibre optic cables shall also be rodent resistant.

6.3.9.9 Optical fibre cables shall be suitable for operation within a temperature range of -10°C to +70°C.

6.3.9.10 The manufacturer’s minimum bending radius for the installation of fibre optic cables shall be adhered to.

6.3.9.11 Where any evidence of mechanical damage or optical performance degradation is recognised as a result of the cable minimum bending radius not being applied, the cable shall be replaced.
6.3.9.12 All cores of optical fibre cables shall be made off and terminated into an appropriate FOBOT.

6.3.9.13 Fibre Optic cabling shall be installed by an appropriately licenced tradesperson in accordance with AS S009 Installation requirements for Customer Cabling.

6.3.10 Instrument Sensor Cables

6.3.10.1 Instrument sensor cables shall be as supplied by or as recommended by the relevant instrument manufacturers and shall be provided with adequate mechanical and UV protection.

6.3.11 Underground Installation – Cable in Conduit

6.3.11.1 Underground cables shall be installed in conduit.

6.3.11.2 Conduit fittings shall be sized so that cables are not bent to less than their minimum bending radius. Bends in conduits should be avoided. If they are essential they should be long radius type and few in number.

6.3.11.3 Minimum conduit size shall be 50 mm.

6.3.11.4 Where conduits are installed between cable pits, generally within the main service corridors, the minimum size conduit shall be 100 mm and a minimum redundancy of 50% shall be provided.

6.3.11.5 This redundancy requirement shall apply separately to each category of service power, control, instrumentation and communications.

6.3.11.6 Conduits should run at 90° under roads carrying vehicular traffic where practical.

6.3.11.7 A spare capacity of 100% shall be provided (minimum of 2 spare conduits) where conduits pass under roads, footpaths and foundations.

6.3.11.8 Draw wires shall be installed in all conduits including conduits containing cables. Where cables are installed in the conduit the draw wire shall remain in the conduit after the last cable has been pulled for future use.

6.3.11.9 Underground conduits shall consist of rigid PVC conduits as follows:

- Power, Control and Instrumentation – Orange Heavy-duty uPVC conduit to AS/NZS 2053;
- Communications - White uPVC conduit, similar to Class 9 pressure pipe;
- Corrugated conduit similar to Corflo shall not be utilised.

6.3.11.10 Power conduits shall be separated by a minimum of 300 mm from all other conduits (refer to 396.7.5).

6.4 Terminations and Connections

6.4.1 Terminations

6.4.1.1 All conductors shall be terminated with approved crimping lugs or crimping pins.

6.4.1.2 Crimping lugs or pins shall be applied using an approved certified tool with a ratchet action.
6.4.1.3 Where hand operated crimping tools are used, the tools shall be of the type which will not release until full compression is applied.

6.4.1.4 Hexagonal crimping dies shall be used on all cables of 10 mm² cross section and above.

6.4.1.5 Separate lugs or pins shall be used for each conductor.

6.4.1.6 The size of the lug or pin shall be suited to the size of the conductor to be terminated.

6.4.1.7 Lugs shall be of the type most suited to the device terminal, e.g. fork tongue for stud terminals and wire pin type for tunnel type terminals.

6.4.1.8 Only one wire shall be crimped in each terminal lug or pin.

6.4.1.9 There shall be no jointing or teeing of wires between terminals.

6.4.1.10 Not more than two wires shall be connected to any terminal.

6.4.1.11 Not more than one wire shall be connected on any termination point of any tunnel type terminal.

6.4.1.12 Where multiple connections are required on tunnel terminals, multiple terminals linked with proprietary terminal link bars or suitable terminals from Mandated Equipment List (see Appendix 1) shall be used. Only where more than one link is required, wire bridges will be permitted.

6.4.1.13 Suitable full sized bolts shall be used for the connection of lugs onto equipment screw terminals.

6.4.1.14 Terminations shall ensure that no extraneous force exists on any cable, core or device when installation is complete.

6.4.1.15 Screws shall not directly contact the conductors.

6.4.1.16 Terminals shall be generously spaced to provide easy access to the terminals of any circuit, and to prevent accidental contact with live circuits in the same compartment.

6.4.1.17 Terminals shall be numbered consecutively from top to bottom and left to right.

6.4.1.18 Each group of terminals shall have a unique designation for each panel and shall generally be identified as X1, X2, X3, etc.

6.4.1.19 The numbering for each new terminal group shall start at one (1).

6.4.1.20 Barriers shall be provided on all terminal banks to group terminals into logical divisions.

6.4.1.21 Where control cables and power cables (above 50 V DC) are connected to terminal strips in the same enclosure, approved protective covers and warning labels shall be installed over power connections. The power terminals shall also be separated by suitably sized terminal barriers.

6.4.1.22 Control terminals shall be angle mounted so that the wire numbers on both sides of the terminal are readable from the front of the switchboard with covers or doors open.
6.4.1.23 Control terminals in Form 3 switchboards shall be mounted in cable zones (not within the modules), within 150 mm of the front of the switchboard for easy access.

6.4.2 LV Terminations
6.4.2.1 All cables shall be installed and terminated using fittings appropriate to the situation.
6.4.2.2 The unsheathed part of multicore cables shall be neatly laced.

6.4.3 Cable Glands
6.4.3.1 Cable glands shall be of an approved weatherproof type that is consistent with the IP rating of the enclosure and the hazardous area classification (if applicable).
6.4.3.2 As a minimum, glands in general areas shall be constructed from:
 • Cables up to 40 mm OD: Nylon or PVC;
 • Cables larger than 40 mm OD: Nickel-plated brass.
6.4.3.3 Nickel-plated brass glands shall not be used in conjunction with aluminium alloy boxes or Aluminium gland plates.
6.4.3.4 All gland plates shall be drilled to the sizes required by the cable gland. The gland sizes shall conform to the manufacturer’s recommendations.
6.4.3.5 Where it is required that PVC cables be connected to equipment that is too small to accommodate the gland, or if permanent wiring is provided with equipment (e.g. solenoid valves), then cables shall be terminated in a conveniently located two-way junction box. Cable entry into equipment must still comply with the IP rating required for the installation. Unitywater may provide approval for the use of PVC junction boxes in these instances only.
6.4.3.6 Connections to equipment from the junction box shall be made using flexible conduit and approved fittings. The enclosure rating of the junction box and fittings shall be appropriate for the area of installation.
6.4.3.7 Cabling into enclosures shall be bottom entry only.
6.4.3.8 Each gland shall accommodate one cable only. Multiple cables shall not be allowed into a single gland.

6.4.4 Power Circuit Connections
6.4.4.1 All power cables within the switchboard shall be connected with a suitably sized lug unless the equipment (circuit breaker or contactor) has tunnel type terminals.
6.4.4.2 Power circuit connections shall be made with high-tensile, electroplated steel or phosphor bronze bolts with a large flat washer and spring locking washer under the bolt head.
6.4.4.3 It shall be possible to check the tightness of all connections by removing covers, if necessary, when the switchboard is completely assembled.
6.4.4.4 Provision shall be made in the termination area to allow circuits to be checked with clip-on type ammeters.
6.4.4.5 Power cables to the load shall be terminated directly on their source of supply. Power terminals of different phases shall be separated by additional barriers unless the terminal design incorporates such barriers as standard.

6.4.5 Numbering of Cables and Wires

6.4.5.1 All cables shall be identified at each end where they are connected to apparatus using stainless steel identification labels. The identification used shall correspond to that shown on the drawings and shall comply with Unitywater numbering requirements outlined in Pr8843 – Major Projects Specification for Drawing Document and Equipment Tag Numbering.

6.4.5.2 All cable labelling shall be etched 316 stainless steel and fixed by appropriate means, i.e. stainless steel cable ties and appropriately tooled off (no sharp edges).

6.4.5.3 Numbering ferrules shall be fitted to each end of all separate lengths of control and power wire.

6.4.5.4 Ferrules shall have black letters on a background of white insulating material.

6.4.5.5 Circular type, slip-on ferrules or saddle type clip-on numbers shall not be used.

6.4.5.6 Ferrules are to be of an approved printed type, Brady-style ferruling system or similar.

6.4.5.7 The same ferrule number shall be used on wires forming connections directly in series or parallel in the same panel.

6.4.5.8 Wires shall be numbered in accordance with the drawings. Wire numbers on wires which leave the equipment module (in form 3 switchboards) shall be prefixed with the equipment number.

6.4.5.9 Ferrules shall be arranged to read from left to right and from top to bottom.

6.5 Pits

6.5.1 Construction

6.5.1.1 Cable pits shall consist of precast concrete pits with concrete lids. Pits, lids and the method of installation shall be suitable for the anticipated wheel loadings in the area in which they are installed. Galvanised steel or aluminium lids may be used where the area is non-trafficable.

6.5.1.2 Lids to electrical pits shall be marked ‘Electrical’.

6.5.1.3 Lids for communications pits shall be marked ‘Communications’.

6.5.2 Minimum Size

6.5.2.1 Cable pits shall be:

- Adequately sized to accommodate the number of conduit entries;
- Allow the installation of cables without infringing on the minimum bending radius of the largest cable to be installed within the pit, during installation and when complete;
• The minimum length of cable pits shall not be less than 4 times the minimum bending radius of the largest cable; and
• Minimum size of 600 mm x 600 mm x 700 mm deep.

6.5.2.2 Dimensions for all pits are internal dimensions at the depth at which the cable entry occurs.

6.5.3 Installation

6.5.3.1 Conduit entries into pits shall have bellmouthed ends.
6.5.3.2 Pits in paved surfaces shall be installed at grade with the surrounding surface.
6.5.3.3 Pits outside paved surfaces shall be installed 30 mm above the surrounding surface and the surrounding ground graded up to the pit for a distance of 1 m.

6.6 Conduits

6.6.1 General

6.6.1.1 Where cables are not installed on cable ladder or in underground conduit, they shall be installed in an open conduit system for cable support and protection.
6.6.1.2 Conduits shall have a minimum diameter of 25 mm.
6.6.1.3 Conduits shall generally be run as directly as practicable.
6.6.1.4 Conduits are to be run so as to enable cables to be drawn-in after installation.
6.6.1.5 A sufficient number of accessible junction boxes shall be provided for this purpose.
6.6.1.6 Inspection fittings shall not be accessible as draw-in points, except where they are used in accessible surface runs of conduit to allow the conduit to pass around beams and other exposed structural members.
6.6.1.7 Conduit fittings shall be sized so that cable is not bent to less than its minimum bending radius.
6.6.1.8 The following are acceptable conduit material:
 • Stainless Steel;
 • Aluminium;
 • HD UV resistant PVC;
6.6.1.9 Galvanised steel is not acceptable.

6.6.2 Surface Run

6.6.2.1 Conduits shall be neatly run and securely fastened by means of stainless steel double sided saddles.
6.6.2.2 Saddles shall be provided within 150 mm of all fittings or terminations.
6.6.2.3 The direction of conduit run shall be parallel to the wall, floors and ceilings wherever practicable.
6.6.2.4 Surface conduits shall be run so as to be as inconspicuous as possible by running in corners and the like.
6.6.3 Cast in Concrete

6.6.3.1 Conduits cast in-situ into concrete shall be orange Heavy-duty uPVC.

6.6.3.2 Where slabs and walls have a layer of reinforcement adjacent to each surface, the conduit shall be installed in the neutral plane between the two layers of reinforcement in such a manner that the reinforcement is not displaced in any way.

6.6.3.3 Deep or extension conduit boxes shall be used as necessary.

6.6.3.4 Conduit run between the reinforcement and the surface of the slab will not be permitted.

6.6.3.5 Where slabs or walls have only one layer of reinforcement placed centrally in the slab, the conduit shall be placed as nearly as possible to the centre of the slab without displacing the reinforcement.

6.6.3.6 A spare capacity of 50 % shall be provided (minimum of 1 spare conduit) where conduits are cast in concrete.

6.6.4 Metallic Conduit

6.6.4.1 All metallic conduits shall meet the requirements set out in the general section above (34).

6.6.4.2 All metallic conduit shall be screwed and installed in accordance with AS/NZS 3000 and other requirements within this specification.

6.6.4.3 All burrs shall be removed from ends and dressed appropriately to ensure cables are not damaged during installation.

6.6.4.4 All conduits shall be straight, free from rust and scale and any sets shall be made cold in such a manner as not to distort the walls of the conduit.

Conduits shall be supported not more than 2 m apart using stainless steel double saddles or unistrut and pipe clamps such that the conduit will be held in position without sagging.

6.6.5 uPVC Conduit

6.6.5.1 Rigid uPVC conduit and fitting shall be in accordance with AS/NZS 2053.

6.6.5.2 Flexible conduit shall be limited to short section, not exceeding 500 mm in length where a conduit run needs to deviate around an obstruction.

6.6.5.3 All joints shall be cemented with an approved cement after cleaning with recommended solvent. For internal exposed conduits, clear cement jointing shall be used.

6.6.5.4 Conduit fittings shall be manufactured from rigid uPVC.

6.6.5.5 Stainless steel double saddles shall be used. Where necessary to eliminate sagging in the conduit additional saddles shall be provided.

6.6.5.6 Where uPVC conduit is installed across rafters or joists in roof spaces it shall be fastened to the side of a timber batten in accordance with relevant Australian Standards.

6.6.5.7 Saddles are to be provided within 150 mm of all fittings and terminations.
6.6.5.8 Where any section of rigid uPVC conduit exceeds 4 m in length an approved expansion joint shall be provided for each 4 m or part thereof along the entire length of the straight section.

6.6.5.9 All sets and bends in rigid uPVC conduit shall be made using internal springs of correct size to prevent wall collapse. Conduits in which any collapse of walls is evident will be condemned.

6.6.5.10 Precautions should be taken during construction to protect the conduits from damage or movement from position by other equipment being used.

6.6.6 Flexible Conduit

6.6.6.1 Flexible conduit shall only be used to make final connection to individual items of equipment, e.g. motors, instruments.

6.6.6.2 The length of flexible conduit shall be kept to the minimum necessary to make the connection and accommodate equipment movement.

6.6.6.3 Flexible conduit type shall be suitable for the WS rating of the wiring system and the ambient conditions, such as sunlight, temperature, chemicals, etc.

6.6.6.4 As a minimum, flexible conduit in general use shall consist of non-metallic liquid tight flexible PVC with non-metallic uPVC reinforcing.

6.6.6.5 Corrugated uPVC conduit shall not be utilised as flexible conduit.

6.6.6.6 Flexible conduits shall be terminated utilising proprietary fittings only.

6.6.6.7 Where flexible conduit is used additional precautions must be considered and put in place to ensure that the IP rating of any enclosure is maintained.

6.6.7 Cable Ladder

6.6.7.1 All cable ladder, tray and duct shall be mounted to reduce build-up of dust and material.

6.6.7.2 Cables ladders shall, where possible, be of ample width to accommodate the cables specified with a 30% allowance for future cabling.

6.6.7.3 Where cable ladders may be subject to mechanical or UV damage the ladder shall be fitted with an approved cover.

6.6.7.4 External cable ladders shall have suitable covers installed. Where covers are fitted they shall be clamped to the ladder with proprietary clamps or appropriate self tapping screws.

6.6.7.5 All cables shall be tied at suitable intervals. Stainless steel cable ties shall be used for all external wiring where exposed to direct sunlight or in hostile environments including but not limited to inlet works, sludge handling, chemical storage and dosing areas. Stainless steel cable ties shall be appropriately tooled off with no sharp edges.

6.6.7.6 Power cables shall be installed in cable ladders with appropriate spacing to prevent de-rating.

6.6.7.7 All cable ladders, tray and associated fish plates, bends, tee pieces etc. shall be made of aluminium or stainless steel and shall be free of burrs or projections to prevent cable damage.
6.6.7.8 All nuts and bolts required for the installation of cable ladder shall be 316 stainless steel.

6.6.7.9 Cable ladders shall have a maximum rung spacing of 300 mm and be supported on fabricated stainless steel or aluminium brackets bolted or clamped to structures with 316 stainless steel bolts.

6.6.7.10 Cable ladders shall be supported at intervals such that when fully loaded with a load of 150 kg/m² of cable ladder surface area plus a mid-span point of 100 kg, then the deflection shall not exceed 1/200 of the span length.

6.6.7.11 Cable ladder sections shall be bolted together and bolts shall not protrude in the rack section which may damage cables during installation.

6.6.7.12 Provision shall be made for expansion and contraction of cable ladder due to temperature, length of run, etc. to prevent buckling or distortion. Sliding joints shall be constructed such that abrasion of the mating surfaces does not cause removal of the anti-corrosion coating and suitable facilities for preserving earthing continuity shall be made at each sliding joint or gap. Care should be taken to ensure that cables are not fastened to the ladder in such a way that the cable is stressed during movement of the steelwork.

6.6.7.13 Cables shall be spaced on racks to avoid build-up of material during normal operation.

6.6.7.14 Cable ladders shall be mounted to maintain 300 mm clearance between racks vertically and at least 150 mm under structural sections.

6.6.7.15 Subsidiary cable trays additional to cable ladders shall be installed where required to provide adequate support to cables.

6.6.7.16 Approved insulating separators shall be installed between the aluminium ladder or tray and steel supports or any other dissimilar metals interface and shall have a minimum thickness of 3 mm.

6.7 Cable Installation

6.7.1 General

6.7.1.1 Upon delivery of the cable drums, they shall be visually inspected for damage incurred during transport or storage.

6.7.1.2 The seal on the inner and outer cable end shall be examined and the condition of armouring, serving or sheath inspected for damage, corrosion or leakage of impregnating oil.

6.7.1.3 During installation cables shall be handled with due care. When pulling cables, any winch used shall have automatic tension limiters and the tension shall not exceed that specified by the manufacturers for the particular cable and conditions of installation.

6.7.1.4 Winching ropes shall be attached to the cable armour with steel mesh sleeves and care shall be taken that cable sheaths are not damaged in any way.

6.7.1.5 When laying or snaking the cable, no twists or kinks shall be allowed to occur.
6.7.1.6 Throughout the installation, twisted, kinked, knotted or crossed cables shall not be permitted. This includes but is not limited in any enclosure and from cable ladder to conduit.

6.7.1.7 When drawing cable into conduits only chalk type or other approved lubricants not injurious to PVC sheathing may be used. Petroleum based substances such as grease or oil are not permitted.

6.7.1.8 When rollers are used during installation, sufficient units shall be placed to keep the cable clear of ground and other obstructions. Vertical rollers shall be used at all changes of direction.

6.7.1.9 Cables shall not be bent to a radius less than that recommended by the manufacturer.

6.7.1.10 Should any damage occur to any part of a cable during handling or installation then approval by Unitywater shall be sought prior to works continuing

6.7.2 Process Plant and Switchroom

6.7.2.1 Except where installed into underground ducts (conduits) formed from buried pipes, all cabling shall be supported by continuous cable ladder support systems. This shall include cabling within covered, pre-formed concrete floor trenches or cable ways below switchrooms.

6.7.2.2 Cables shall not be fixed directly to the base or sides of trenches.

6.7.2.3 Cable containment and/or support within the cable pit is required.

6.7.2.4 Each MCC will be arranged for cable entry from below for all incoming and outgoing circuits.

6.7.2.5 Beneath each MCC, cabling shall be installed onto multiple formations of cable ladders and/or cable trays as appropriate to the sizes and combined weights of the cables and taking into consideration the cable current ratings for each type of support.

6.7.2.6 Cables with outside diameters of 35 mm and above shall be run in a single layer and fixed to cable ladder supports with the exception of SDI mains cable which shall be installed in trefoil.

6.7.2.7 All cable apertures and duct penetrations into buildings including spare ducts shall be sealed, maintaining the fire rating of the respective building.

6.7.2.8 Other openings, ducts, trenches, cable ways or the like made for the entry of electrical conduits and cables through external walls of buildings shall be sealed with a weatherproof concrete grout and those for internal wall of buildings shall be sealed with a weak concrete mix. Silicon rubber and EPS foam will not be acceptable.

6.7.2.9 The method of sealing conduits shall prevent vermin entry.

6.7.2.10 All spare conduits and ducts shall be effectively plugged and sealed.

6.7.2.11 Cables to variable speed drives shall be installed in accordance with the manufacturer's recommendations with due allowance (as required) for additional hardware such as Filters or output chokes to compensate cable length,
6.7.3 Wiring Method

6.7.3.1 Cables shall be installed in continuous lengths.

6.7.3.2 Jointing of cables and use of connectors will only be permitted at outlets or suitably positioned junction boxes.

6.7.3.3 Wiring shall not be run through fittings.

6.7.3.4 Wiring shall enter and leave at the one point.

6.7.3.5 Wiring shall be protected by conduit where exposed to the risk of damage.

6.7.3.6 The design and selection of wiring systems shall be suitable for the external influences that they will be exposed to at the point of installation and at site, in accordance with AS/NZS 3000.

6.7.4 Support and Protection

6.7.4.1 Cables shall be routed and adequately supported on cable ladders or trays.

6.7.4.2 Where cables leave the ladder or tray for short lengths they shall be run in conduit.

6.7.4.3 Cables installed 1500 mm below finished surface level shall have additional mechanical protection in the form of the following:

- Conduit systems; and
- Aluminium channel, etc.

6.7.4.4 The use of Ramset nails for support of cables or cable supports is not acceptable.

6.7.4.5 Conduit, cable ladder covers, duct or other approved installation method shall provide protection of the cables from sunlight exposure, and associated UV damage, along their entire length.

6.7.5 Segregation

6.7.5.1 The following groups of cables shall be segregated from each other by continuous barriers when installed in common ladder systems or by using separate ducts or conduits:

- 240/415V power supplies, control supplies and systems;
- 24V DC control and power supplies;
- Instrumentation, signal and communications systems, including thermistor wiring.

6.7.5.2 Separation spacing may be used in lieu of a barrier. The minimum separation distances shall be as follows:

- LV Power cables to all other cables > 300 mm;
- ELV cables to data/communications/fibre optic > 300 mm;
- HV cabling to LV cables >600mm
- HV cable to ELV or data/communication cable/fibre optic >900mm.

6.7.6 **Cable Slack**

6.7.6.1 Slack shall be provided at termination boxes and equipment to facilitate servicing and re-terminating.

6.7.6.2 All cables shall be routed and terminated to provide extra length for future re-termination.

6.7.7 **Single Core Cables**

6.7.7.1 Single core cables forming part of a three-phase system shall be clamped together in trefoil over their entire route to avoid de-rating.

6.7.7.2 The configuration of parallel trefoil circuits shall comply with the recommendations of AS/NZS 3008.1.1 Appendix B. This configuration requires that the phase arrangement in one cable group shall be a lateral mirror image of the phase arrangement of the adjacent group.

6.7.7.3 The clamping of single core cables in trefoil shall be of sufficient mechanical strength to withstand the forces generated by fault currents.

6.7.7.4 Single core cables shall be installed so as to avoid hysteresis and eddy currents in surrounding metal work or cleating and shall be glanded through non-ferrous material.

7. **Switchboards and Motor Control Centres**

7.1. **Design – Main Switchboards**

7.1.1 **General**

7.1.1.1 Main Switchboards shall be designed addressing at least the following aspects:

- Location of switchboard within switchroom;
- Maximum length of switchboard;
- Maximum height of switchboard;
- Fault Rating;
- Form Factor; and
- Future expansion requirements.

7.1.2 **Location**

7.1.2.1 The switchboard shall be designed commensurate with the installation location.

7.1.2.2 The switchboard shall have an appropriate IP rating for its location; however, it shall have a minimum IP rating of IP54.
7.1.3 Dimensions and Provision for Handling
7.1.3.1 The switchboard shall be designed to fit appropriately in the space allocated. In certain installations there may be a restriction on switchboard length to suit the room.
7.1.3.2 The maximum height of any switchboard is to be considered during the design.
7.1.3.3 In certain installations the height may be restricted due to existing infrastructure.
7.1.3.4 The switchboard is to be designed with transportation requirements considered, in particular transportable sections.
7.1.3.5 The maximum length of any section shall be no more than 2700 mm.
7.1.3.6 Sufficient eye bolts shall be fitted for lifting with covers installed over holes after installation.

7.1.4 Future Expansion
7.1.4.1 The switchboard is to be designed with future use in mind:
- A minimum of 20% spare space capacity and 25% load capacity is required for all new switchboard installations; this may be increased depending upon location and future services to be connected;
- The spare capacity requirements shall be further outlined in the project requirements.

7.1.5 Internal Separation
7.1.5.1 The internal separation of the switchboard shall be considered with the operational and maintenance personnel safety to be the highest priority.
7.1.5.2 Internal separation shall be in accordance with AS/NZS 3439.1:2002 clause 7.7.

7.2 Design – Motor Control Centre
7.2.1 General
7.2.2.1 Motor Control Centres (MCC) shall be designed with the following considerations:
- Location of MCC within switchroom;
- Maximum length of MCC;
- Maximum height of MCC;
- Fault Rating;
- Form Factor; and
- Future expansion.
7.2.2.2 In general, the MCC will house variable speed drives, soft starters, contactors, control circuitry and communication devices.
7.2.2.3 Small variable speed drives shall be installed internally to the MCC unless stated in the project requirements.
7.2.2.4 Large variable speed drives shall be installed externally to the MCC unless stated in the project requirements.

7.2.2.5 Small Soft Starters shall be installed internally to the MCC unless stated in the project requirements.

7.2.2.6 Large Soft Starters shall be installed externally to the MCC unless stated in the project requirements.

7.2.2.7 Other large items not mentioned above that would difficult to remove or replace shall be mounted externally to the MCC unless stated in the project requirements.

7.2.2.8 All control circuitry for a drive shall be contained in the functional unit and shall not be separated or distributed.

7.2.2.9 The MCC and main switchboard may be combined to suit individual site requirements.

7.2.2.10 STPs shall have a main switchboard and an appropriate number of MCC for the site.

7.2.2.11 Consideration is to be given to replacement of functional units and bus bar connected isolators in terms of safe removal and replacement of these items. A bus tie may be required in certain installations to maintain plant operability while these activities are carried out. If multiple MCCs are installed in the same switchroom, then drives for the same equipment shall be distributed across multiple MCC, i.e. Pump 1 in MCC1 and Pump 2 in MCC2. This clause also applies if the Main Switchboard is a combined Main Switchboard/MCC.

7.2.2 Location

7.2.2.1 The MCC is to be designed appropriately for the installation location.

7.2.2.2 The MCC shall have an appropriate IP rating for its location, however it shall have a minimum IP rating of IP54.

7.2.2.3 MCC shall be located on site to minimise cable runs and limit the use of chokes for VSD.

7.2.3 Dimensions and Provision for Handling

7.2.3.1 The MCC shall be designed to fit appropriately in the space allocated. In certain installations there may be a restriction on MCC length to suit the switchroom.

7.2.3.2 The maximum height of any MCC is to be considered during the design.

7.2.3.3 In certain installations the height may be restricted due to existing infrastructure.

7.2.3.4 The MCC is to be designed with transportation requirements considered, in particular transportable sections.

7.2.3.5 The maximum length of any section shall be no more than 2700 mm.

7.2.4 Future Expansion

7.2.4.1 The MCC is to be designed with future use in mind. A minimum of 20% spare space capacity and 25% load capacity is required for all new MCC installations. This may be increased depending upon location and future services to be
connected. The spare capacity requirements shall be further outlined in the project requirements.

7.2.5 Internal Separation

7.2.5.1 The internal separation of the MCC shall be considered with the operational and maintenance personnel safety to be the highest priority.

7.2.5.2 Internal separation shall be in accordance with AS/NZS 3439.1:2002 clause 7.7 Distribution Boards

7.3. Switchboard Construction Details

7.3.1 Switchboard Layout

7.3.1.1 The switchboard shall be laid out in a logical manner with construction, operability and maintainability the primary design drivers.

7.3.1.2 The switchboard builder shall be responsible for the detailed design of the switchboard.

7.3.1.3 All switchboards, MCC, control panels or any other electrical equipment shall be bottom cable entry only. Any other point of entry requires the approval of Unitywater Electrical Engineering personnel.

7.3.2 Spare Capacity

7.3.2.1 Spare space shall be provided in the switchboard or MCC equivalent to 20% of the total space allocated to starter and supply equipment/modules (excluding cable zones). This is to be detailed on the general arrangement drawings.

7.3.2.2 This space shall be placed preferably at one end of the MCC and provision for future expansion shall be allowed from this end of the MCC to facilitate expansion; a removable blanking plate shall be installed over the end of the busbar chamber and cable zone.

7.3.3 Metal Work – Internal Switchboards

7.3.3.1 The switchboard shall be a completely self-supporting fully welded rigid structure, constructed from formed Marine Grade Aluminium 5251 or 5083, of minimum thickness 3.0 mm or 1.6 mm Stainless Steel 316 folded and seam welded, free from corrosion, dents and any surface defects. Zinc Anneal, powder coated switchboards of minimum 2.0 mm thickness will only be considered where the switchboard is installed within a sealed air conditioned switchroom and by agreement with Unitywater.

7.3.3.2 Equipment mounting panels shall be a minimum 2.0 mm thick for those panels up to an area of 500 mm x 500 mm. Where panels are larger, 3.0 mm thick mounting plates shall be used, supported by studs of adequate size welded to the case. Large equipment mounting panels, (exceeding 1000 mm in any direction) shall be secured by a minimum of six welded studs and nuts.

7.3.3.3 Heavy equipment shall be supported by separate independent framework and shall not rely on the enclosure sheeting.

7.3.3.4 All nuts, bolts and studs shall be 316 Stainless Steel.
7.3.4 **Metal Work – External Switchboards**

7.3.4.1 The switchboard shall be a completely self-supporting fully welded rigid structure, constructed from formed Marine Grade Aluminium 5251 or 5083, of minimum thickness 3.0 mm or 1.6 mm Stainless Steel 316 folded and seam welded, free from corrosion, dents and any surface defects.

7.3.4.2 Where panels are manufactured using aluminium the equipment mounting panels shall be a minimum 2.0 mm thick for those panels up to an area of 500 mm x 500 mm. Where panels are larger, 3.0 mm thick mounting plates shall be used, supported by studs of adequate size welded to the case. Large equipment mounting panels, (exceeding 1000 mm in any direction) shall be secured by a minimum of six welded studs and nuts.

7.3.4.3 External switchboards shall be provided with sun covers on all sides.

7.3.4.4 Heavy equipment shall be supported by separate independent framework and shall not rely on the enclosure sheeting.

7.3.4.5 All nuts, bolts and studs shall be 316 Stainless Steel.

7.3.5 **Metal Work – Doors**

7.3.5.1 Doors shall be constructed from the same material as the switchboard and shall be free from corrosion, dents and any surface defects.

7.3.5.2 Door sealing shall be achieved by 120° return on case, sealing against neoprene gasket glued to the inside of the door and held in place by a gasket retaining angle.

7.3.5.3 Stiffeners shall be fitted to all doors with dimensions in excess of 1000 mm high and 450 mm wide, or as required. Doors shall open a minimum of 100° for equipment access, and shall be fitted with door stays.

7.3.5.4 All doors shall be fitted with 316 stainless pentile hinges, a minimum of three to be fitted if over 1200 mm in height and be secured with 316 stainless steel 9mm solid square latches.

7.3.5.5 All doors for incomers, ATS, Supply Authority metering, generator feeders and power feeders shall be held closed with 316 stainless steel SelectLok semi flush type padlockable swing handles.

7.3.5.6 Doors shall be 3-way latching if over 1000 mm in height.

7.3.5.7 Doors for vertical cable zones shall have pintle hinges and be secured with 316 stainless steel 9mm solid square latches.

7.3.5.8 Sufficient space shall be allowed for all doors to open fully without fouling other items of equipment or other open doors.

7.3.6 **Escutcheons**

7.3.6.1 Escutcheons shall be constructed from the same material as the switchboard and be free from dents and any surface defects, powder coated gloss white. They shall be hinged and removable in the fully open position. Hinges shall be of the concealed or chrome plated type.
7.3.6.2 All escutcheons shall be held closed by means of 316 stainless steel chrome plated `D' handles, a minimum of three is required if over 1000 mm in height.

7.3.7 Covers
7.3.7.1 Covers shall be constructed from the same material as the switchboard and be free from corrosion, dents and any surface defects.
7.3.7.2 All covers shall be secured using 316 stainless steel acorn nuts. A minimum of six are required if the cover is over 1000 mm in any direction.
7.3.7.3 Acorn nuts shall only be used for covers for busbar zones and horizontal cable zones and the top and bottom of switchboards.

7.3.8 Switchboard Requirements - General
7.3.8.1 Switchboard Compartments shall have standardised width and depth and an interchangeable standardised set of heights.
7.3.8.2 Compartments shall be designed and sized for ease of access for maintenance.
7.3.8.3 A clear space of at least 1000 mm in front of the assembly shall be provided.
7.3.8.4 Module doors covering low voltage equipment shall have defeatable door interlocks. The interlocking switch shall be padlockable in the off position. Control circuit shall be housed in fully sealed compartments.
7.3.8.5 In addition to design requirements, switchboards shall comply with AS/NZS 3439.1 and AS/NZS 3000.
7.3.8.6 Main Switchboards and MCC's shall be Type Tested Assemblies in accordance with AS/NZS 3439.1. Type Test certificates shall be held in the name of the company manufacturing the switchboards.
7.3.8.7 Equipment ratings developed during the design shall be shown on the drawings and shall be the required ratings after all de-rating factors have been applied.
7.3.8.8 The full load rating for motor circuits shall be taken as the motor full load current while the rating for other circuits shall be the circuit breaker rating.
7.3.8.9 Sufficient clear space above a panel shall as far as practicable be provided to allow access for installation repair and maintenance and for a bus-bar constructed panel shall be of nominal distance 500 mm.
7.3.8.10 Where an assembly is to be installed over a trench or open floor, adequate access for installation and future maintenance of cabling including trench cover plates shall be provided.
7.3.8.11 Floor mounted assemblies installed in rooms with suspended floors or over open cable trenches shall be provided with an additional supporting framework suitably fixed to the assembly's bed frame or plinth.

7.3.9 Distribution Boards
7.3.9.1 Distribution boards greater than 18 poles shall be a chassis type.
7.3.9.2 Distribution boards shall be designed for the application i.e. light and power, UPS supplied.
7.3.9.3 All distribution boards shall have a circuit legend adjacent to the distribution board or inside the door, clearly identifying all outgoing circuits. The legend shall show circuit numbers, current ratings of MCB, neutral link number (if applicable), cable sizes and type and load supplied. This shall also be replicated on a drawing.

7.3.9.4 Distribution Boards shall be installed inside buildings.

7.3.9.5 It is preferable for distribution boards to be free standing and external to switchboards. However the following is provided if the distribution board is contained within the switchboard or MCC.

- Compartments enclosing circuit breakers and distribution boards shall be fitted with a hinged metal escutcheon mounted behind the compartment door, and the operating handles of the devices shall protrude through holes in the escutcheon;
- The escutcheons shall be latched with 316 stainless steel 9mm solid square latch handles.

7.3.9.6 Doors for distribution boards shall have pintle hinges and be secured 316 stainless steel flush mounted swing handles.

7.3.9.7 An unobstructed exit route comprising a clear path of not less than 600 mm width when all compartment doors are open at right angles shall be provided.

7.3.10 Programmable Controller and Instrument Enclosures

7.3.10.1 The Plant Control System compartment(s) shall have the following equipment installed:

- A 24 VDC power supply;
- PLC equipment;
- Fold Down laptop table on the inside of the door.

7.3.10.2 The enclosure shall be lit by a minimum of an 18 Watt fluorescent lamp to provide acceptable illumination level for detailed work. Irrespective of this requirement the minimum illumination levels shall be complied with as per section 13.6.

7.3.10.3 The Plant Control System shall have a dedicated marshalling terminals strip located in the cubicle.

7.3.10.4 Each individual input or output (I/O) of all installed I/O cards shall be wired to the marshalling terminal strip including those I/O designated as “spare”.

7.3.10.5 All equipment and circuits shall be IP2X rated.

7.3.11 Cable Zones

7.3.11.1 Switchboards and motor control centres shall be supplied with vertical cable zones adjacent to each tier and with a horizontal wiring enclosure running along the top of the tiers for the length of the board.

7.3.11.2 Adequate access shall be provided from each vertical zone to the wiring enclosure.
7.3.11.3 Cable zones shall be adequately sized, of minimum opening width 300 mm and shall be designed for ease of installation and maintenance of cables.

7.3.11.4 Cable tray shall be mounted over the full length of all cable zones to allow fastening of cables.

7.3.11.5 Cable ways shall be provided as necessary to ensure that apart from interconnections no cable routed to one compartment shall pass through any other compartment. Equipment shall not be located within the cableways.

7.3.11.6 All cable entries shall be affected using glands.

7.3.12 Gland Plates

7.3.12.1 Gland plates shall be constructed of the marine grade aluminium with appropriate gaskets nominally 3mm thick with 6mm required where large cables or a large number of cables are to be glanded and be free from corrosion, dents and any surface defects.

7.3.12.2 25 mm wide neoprene gaskets shall be fitted to all gland plates and secured with 6 mm bolts at maximum 150 mm centres.

7.3.12.3 Access to both sides of each gland plate when it is in position shall be possible.

7.3.12.4 Gland plates shall be removable for drilling.

7.3.12.5 Gland plates shall be installed with spare holes (nominally 20%) to allow for future installation of cables without the need to remove and re-drill the gland plate. Unitywater personnel shall provide final acceptance on appropriate sizing and number of spare holes based on individual site requirements. Spare holes shall be sealed with threaded bungs. Spare blank capacity shall be left for further expansion or for larger glands.

7.3.12.6 Main incoming and outgoing sub-mains gland plates are excluded from this specific requirement.

7.3.13 Plinth

7.3.13.1 The Plinth shall be a minimum 75 x 45 mm galvanised channel with rubber spacer to be provided between the plinth and the switchboard.

7.3.13.2 The plinth shall have M12 clearance holes for bolting to the floor.

7.3.13.3 The plinth shall be toe out.

7.3.14 Paint Treatment of Switchboards

7.3.14.1 The surface of the switchboard metalwork shall be degreased and cleaned with solvent, then coated with electrostatically applied powder coat in accordance with paint manufacturers' recommendations.

7.3.14.2 Exterior colours shall be chosen to achieve a low solar absorbance. The switchboard cabinet and exterior doors shall be powder coated mist green (AS 2700 colour G54). Escutcheons shall be gloss white.

7.3.14.3 The minimum paint thickness shall be 200 μm for mild steel boards and 75 μm for SS/MGA boards.
7.3.14.4 Additional touch up paint shall be supplied for any damage caused during transport and installation and left on site.

7.3.15 Sealing
7.3.15.1 All switches, control devices or instruments protruding from a panel shall be sealed to match switchboard degree of protection or mounted behind a sealed perspex window in the panel to achieve higher rating.

7.3.15.2 Switchboard modules shall be sealed to restrict arc transmission in the event of a fault.

7.3.15.3 Each phase of the connections between the busbars and the line side of functional unit protective devices shall be individually supported and sealed to achieve better sealing i.e. the three phases shall not be brought through the same hole into the module.

7.3.15.4 Provision shall be made for sealing switchboard modules after the installation of field cabling.

7.3.15.5 Module cable entry points shall be bushed to prevent cable damage.

7.3.16 Shrouding
7.3.16.1 All live parts (including terminals, busbars, and control devices and meters mounted on the doors) which are behind hinged non interlocked doors or escutcheons and which carry a voltage higher than 55V shall be shrouded to IP20 to protect against accidental contact when the enclosure doors or escutcheons are open.

7.3.16.2 Appropriate warning labels shall be provided on shrouds.

7.3.17 Equipment Mounting
7.3.17.1 No piece of equipment which is to be operated or viewed by an operator (pushbuttons, switches, and meters) shall be mounted more than 1900 mm or less than 400 mm above finished floor level.

7.3.17.2 Opening any door or removing any cover must not be required for operation or resetting any piece of equipment.

7.3.17.3 No piece of equipment shall be mounted behind other equipment or in any manner denying free access for removal or maintenance.

7.3.17.4 All equipment within modules shall be mounted on removable equipment panels and shall be fixed to the equipment panel by means of stainless steel metal thread screws and tapped holes or DIN rail mounting.

7.3.17.5 Self tapped fixings shall not be used. Equipment within small modules (less than 250 mm high opening) shall be mounted within 200 mm of the front of the MCC to allow better access to terminals.

7.3.17.6 Items of equipment or terminals shall be no closer than 300 mm measured vertically from outgoing gland plates.

7.3.17.7 All equipment and devices shall be installed in such a manner that all necessary electrical clearances are observed and that the rating accuracy of devices is not
impaired either thermally or electro-magnetically by the proximity of other devices or cables.

7.3.18 Busbars

7.3.18.1 Busbars shall be formed from hard drawn, high conductivity, solid round-edged rectangular tinned copper bar.

7.3.18.2 The current carrying surfaces of busbar joints shall be thoroughly cleaned to remove all traces of dirt and grease and shall be coated with a layer of corrosion-inhibiting jelly immediately prior to joining.

7.3.18.3 Connections shall be secured with high-tensile steel bolts and Bellville washers tensioned in accordance with manufacturer's instructions.

7.3.18.4 Dust and vermin proofing of the busbar chamber shall not be dependent on a seal between the cubicle walls and the floor but shall be by a complete metal enclosure. If ventilation is required in the bus chamber then the openings shall be covered with insect and vermin proof screens.

7.3.18.5 It shall be possible, by removing covers, to readily gain access to all busbar, riser and dropper joints in order to check their condition and general security. This shall not necessitate the removal of component mounting plates within sections.

7.3.18.6 A neutral busbar shall extend the full length of the switchboard and shall have take-off points sufficiently separated from live conductors to allow safe connection of circuit neutrals.

7.3.18.7 All phase and neutral bars shall be colour coded using bands at 300 mm intervals.

7.3.18.8 A minimum 31.5 mm x 6.3 mm earth bar shall extend the full length of the switchboard adjacent to the outgoing cable gland plates. The earth bar shall be colour-coded with green/yellow bands at maximum 300 mm intervals. The earth bar shall be tapped and fitted with bolts, washers and spring washers to accommodate the earth connections for all incoming and outgoing cables, with 20% spare connections.

7.3.18.9 For termination of field earth cables 2.5 mm² and smaller, an earth link bar with at least ten terminals shall be mounted on the earth busbar adjacent to each cable zone. Only one earth cable will be terminated at each earth terminal.

7.3.18.10 All parts of the switchboard which are required to be earthed shall be effectively connected to the earth busbar. Provision shall be made for the entry and termination of an earth cable at each end of the board, and for suitable terminals for connection to an earth core and/or steel armouring on all other incoming and outgoing cables.

7.3.18.11 Where the panel is likely to be extended in the future, the busbars should be drilled for extension.

7.3.18.12 Busbar sections shall preferably be installed at the top of the switchboard/MCC.

7.3.19 Main Circuit Rating and Temperature Rise

7.3.19.1 The main circuit supply rating required will be determined by the Contractor. The main circuit shall provide this rating with a busbar temperature rise of not more
than 30°C above ambient and within the temperature rise limits detailed AS/NZS 3439.1.

7.3.19.2 The busbar sizes shall be determined in accordance with the manufacturer’s type test certificate.

7.3.19.3 Smaller busbars than those determined by the above method may be used only if an approved testing authority has carried out temperature rise tests on a switchboard with the same busbar sizes and similar internal configuration to the switchboard being supplied. Should this be the case, details of the test design shall be provided.

7.3.19.4 Regardless of busbar sizes, the temperature rise limits specified above shall not be exceeded.

7.3.19.5 Cables shall not be used in the main circuit supply except as permitted by AS/NZS 3439.1. When cables are used in the main circuit, they shall be double insulated.

7.3.20 Incoming Feeder

7.3.20.1 Busbar flags, cable lugs and cable glands suitable for the size of the incomer cables shall be installed in the incoming termination area.

7.3.20.2 Cable glands (including those for neutral and earth cable) shall be mounted on the incoming gland plate suitable for the incoming circuit.

7.3.20.3 The distance from cable lugs to the gland plate shall be a minimum of 300 mm, but in any case shall facilitate the ease of installation of large cables.

7.3.21 Short Circuit Performance

7.3.21.1 The main circuit shall be constructed to withstand, without thermal or mechanical damage for 1 second, the short circuit stresses generated by the fault level stated.

7.3.21.2 The switchboard design shall have been successfully type tested in accordance with AS/NZS 3439.1 by a recognised Australian testing authority. The design tested shall be applicable to the switchboard being supplied, i.e. it shall include feeders and motor starters if these are being supplied.

7.3.21.3 The switchboard being supplied shall be in no way inferior to the type tested switchboard, i.e.:
- Busbar ratings shall not be less than those type tested;
- Busbar supports shall be identical in material and mounting method to those type tested;
- Busbar support spacings shall not be greater than those type tested;
- Phase centres shall not be less than those type tested;
- Creepage and clearance distances shall not be less than those tested;
- Feeder and motor starting equipment (circuit breakers, switch fuses, contactors, and overloads) shall preferably be the same equipment and in the same combination as that used in the type test (however, not every rating need have been tested).
7.3.22 Arc Containment Performance

7.3.22.1 If the fault level nominated is greater than 30kA for 1 second, then the switchboard supplied shall be of the arc containment type.

7.3.22.2 Arc containment switchboards, including motor starting and feeder equipment shall provide 'acceptable protection' for operators in the event of an internal arcing fault occurring on the load side of a protective device in any switchboard compartment.

7.3.22.3 The design being offered shall be certified type tested in accordance with AS/NZS 3439.1 by a recognised testing authority. Arc Fault containment shall be in accordance with Annex ZC and ZD of AS/NZS 3439.1

7.3.22.4 The construction methods used in the tested switchboard (e.g. venting, door bracing and door mounted equipment shrouding) shall be the same as in the switchboard being supplied.

7.3.22.5 The protective devices (circuit breakers and fuses) shall preferably be the same as those tested although not every protective device rating need have been tested.

7.3.23 Switchboard Equipment

7.3.23.1 All components of the switchboard shall be selected and installed so that all circuits can operate simultaneously at the full load rating shown on the drawings at the worst climatic extreme specified.

7.3.23.2 All equipment shall have front connection and removable cover plates shall be provided to permit ready access for this purpose.

7.3.23.3 All assemblies shall be vermin proof.

7.3.23.4 Indicating lights shall be LED type with colours as indicated on the design drawings.

7.3.24 Power Meters

7.3.24.1 Electronic power meters shall have integral communications and comply with the requirements of Unitywater specification Pr9833 SCADA and PLC Architecture.

7.3.24.2 Electronic power meters shall be front panel mounted and have a LCD type display that displays the selected readings from all three phases simultaneously.

7.3.24.3 Electronic power meters allow the user to define CT and VT ratios so that the display is in real units.

7.3.24.4 Electronic power meters be capable of measuring the following parameters:

- Instantaneous Voltage (3, min/max);
- Instantaneous Current (3, min/max);
- Demand Current (3 + N, min/max);
- Power factor (3, av.);
- kVA, kVAR, kW, kWh, kVA demand, kW demand (total);
- Frequency (av., min/max);
- Total Harmonic Distortion (THD).

7.3.24.5 Any special tools necessary for the maintenance or operation of the switchboard equipment shall be supplied.

7.3.25 **General Circuit Breakers**

7.3.25.1 Circuit breakers and isolators shall be padlockable in the off position. The padlock facilities shall not be dependent on the position of the escutcheon which shall be able to be opened with padlocks present.

7.3.25.2 Where the distribution board incoming circuit breaker or switch fuse is mounted on the escutcheon, the escutcheon shall be interlocked so that it cannot be opened unless the incomer is in the off position.

7.3.25.3 A circuit schedule and holder shall be provided on the inside of the door of the distribution board compartment.

7.3.26 **Air Circuit Breakers**

7.3.26.1 Air circuit breakers shall have been tested by a recognised testing authority for compliance with AS/NZS IEC 60947.2. If this testing was not carried out within Australia, then a Certificate of Approval shall be provided from an approved Australian Electrical Distribution Authority.

7.3.26.2 ACBs shall have the classification characteristics outlined in **Table 6 - ACB Classification Characteristics**, in accordance with AS/NZS IEC 60947.2:

Table 5 - ACB Classification Characteristics

<table>
<thead>
<tr>
<th>ABC Characteristics</th>
<th>Required Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>415 V AC</td>
</tr>
<tr>
<td>Rated Continuous Current</td>
<td>Rating shown of design drawing or in Schedule of Technical Requirements</td>
</tr>
<tr>
<td>No. of Poles</td>
<td>3 or 4 where nominated on drawings</td>
</tr>
<tr>
<td>No. of Phases</td>
<td>3</td>
</tr>
<tr>
<td>Interrupting Medium</td>
<td>Air</td>
</tr>
<tr>
<td>Mounting</td>
<td>Withdrawable</td>
</tr>
<tr>
<td>Open/Close Mechanism</td>
<td>Independent Manual</td>
</tr>
<tr>
<td>Trip Units – minimum requirements</td>
<td>Over current (L-S-I)/Earth Fault</td>
</tr>
<tr>
<td>Interrupting Rating</td>
<td>Fault level on drawings or in the Schedule of Technical Requirements</td>
</tr>
<tr>
<td>Auxiliary Contacts</td>
<td>Required number for original design requirements plus at least 1 N/O and 1 N/C</td>
</tr>
<tr>
<td></td>
<td>as spare</td>
</tr>
<tr>
<td>Short Circuit @ 440 V</td>
<td>O – t – CO – t – CO as defined in AS/NZS IEC 60947.2</td>
</tr>
</tbody>
</table>
Table 6 - MCCB Classification Characteristics

<table>
<thead>
<tr>
<th>MCCB Characteristics</th>
<th>Required Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>415 V AC</td>
</tr>
<tr>
<td>Rated Continuous Current</td>
<td>Rating shown of design drawing or in Schedule of Technical Requirements</td>
</tr>
<tr>
<td>No. of Poles</td>
<td>3</td>
</tr>
<tr>
<td>No. of Phases</td>
<td>3</td>
</tr>
<tr>
<td>Interrupting Medium</td>
<td>Air</td>
</tr>
<tr>
<td>Mounting</td>
<td>Withdrawable</td>
</tr>
<tr>
<td>Open/Close Mechanism</td>
<td>Independent Manual</td>
</tr>
<tr>
<td>Trip Units – minimum requirements</td>
<td>Inverse time, instantaneous</td>
</tr>
<tr>
<td>Interrupting Rating</td>
<td>Fault level on drawings or in the Schedule of Technical Requirements</td>
</tr>
<tr>
<td>Auxiliary Contacts</td>
<td>Required number for original design requirements plus at least 1 N/O and 1 N/C as spare</td>
</tr>
<tr>
<td>Short Circuit @ 440 V</td>
<td>P1 to IEC 947-2</td>
</tr>
<tr>
<td>Service</td>
<td>IEC 947-2</td>
</tr>
</tbody>
</table>

7.3.27.3 MCBBs used in motor power circuits shall be combined with the motor starter specification in section 10 and shall be selected in accordance with the MCCB manufacturer's recommendations for the motor size.

7.3.27.4 Instantaneous only trip unit may be used for motor power circuits.

7.3.27.5 Instantaneous trip units shall have a maximum setting of at least 15 times the motor full load current.

7.3.27.6 Provision shall be made for padlocking each MCCB in the off position with door interlocking handle and padlock attachment.
7.3.28 Switchboard Equipment – Current Transformers (CT)

7.3.28.1 Current Transformers shall comply with the requirements of AS 60044.1 and shall have the following characteristics in accordance with this standard:

<table>
<thead>
<tr>
<th>CT Characteristics</th>
<th>Required Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructions</td>
<td>Window</td>
</tr>
<tr>
<td>Number of Primary Turns</td>
<td>1</td>
</tr>
<tr>
<td>System Voltage</td>
<td>415 V AC</td>
</tr>
<tr>
<td>Rated Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated Primary Currents</td>
<td>Rating shown on design drawings</td>
</tr>
<tr>
<td>Rated Secondary Currents</td>
<td>1A</td>
</tr>
</tbody>
</table>

7.3.28.2 Measurement CTs shall also meet the following requirements:
- Type: M;
- Accuracy Class: 1;
- Rated Burden: 0.6Ω;
- Rated Output: 15 VA.

7.3.28.3 Protection CTs shall also meet the following requirements:
- Classification: P;
- Accuracy Limit Factor: 10;
- Composite Error: 2.5;

7.3.28.4 Polarity markings shall be marked on each CT along with other information as required by AS 60044.1.

7.3.28.5 CTs shall be air insulated, with short circuit ratings not less than those of the circuits in which they are connected. They shall be mounted with P1 terminals adjacent to the busbars.

7.3.28.6 The polarity of primary and secondary windings shall be clearly indicated.

7.3.28.7 All CT secondary wiring except motor CT wiring shall be connected to test links which allow testing with 2 mm banana plugs.

7.3.28.8 CT wiring shall be 4 mm² minimum CSA.

7.3.28.9 CTs for tariff metering on switchboard incoming supplies shall be installed in accordance with Local Supply Authority requirements.

7.3.28.10 Voltage connections shall also be made.

7.3.28.11 All current transformers shall be installed such that they can be readily replaced.

7.3.28.12 Sufficient space shall be provided for ease of installation of future additional CTs within bus zones of switchboards.
7.3.29 Switchboard Internal Wiring

7.3.29.1 Wiring insulation shall be non-hygroscopic, incapable of supporting combustion and shall be capable of withstanding the service conditions to which it is subjected.

7.3.29.2 All wiring for control, protection, metering, alarm and indication shall be not less than 1.5mm² CSA (unless stated below) tinned copper conductors with a 30/0.25mm construction.

7.3.29.3 Wiring carrying 4-20mA or similar low-level instrumentation signals shall be shielded pair, of not less than 1 mm cross section. Shielding shall be grounded at the source only.

7.3.29.4 Wiring the Plant Control System and the marshalling terminals within the cubicle or immediately adjacent shall be single core 1 mm flexible cable, unless using approved, purpose-built cabling and connectors.

7.3.29.5 The insulation for wiring within panels shall be 250V grade PVC, V75 and shall be coloured as outlined in Table 9 - Wire Colour Code.

Table 8 - Wire Colour Code

<table>
<thead>
<tr>
<th>Wire Type</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase wiring</td>
<td>Red (‘A’ Phase), White (‘B’ Phase) and Light Blue (‘C’ Phase)</td>
</tr>
<tr>
<td>Neutral</td>
<td>Black</td>
</tr>
<tr>
<td>Single Phase Power</td>
<td>Red</td>
</tr>
<tr>
<td>Earth</td>
<td>Green/Yellow</td>
</tr>
<tr>
<td>Single Phase Controls</td>
<td>White</td>
</tr>
<tr>
<td>Neutrals</td>
<td>Black</td>
</tr>
<tr>
<td>24 V DC Positive</td>
<td>Brown</td>
</tr>
<tr>
<td>24 V DC Negative</td>
<td>Grey</td>
</tr>
<tr>
<td>Thermistor Circuit</td>
<td>Orange</td>
</tr>
<tr>
<td>12 V DC</td>
<td>Red and Black Twin cable</td>
</tr>
<tr>
<td>Analogue I/O connections Dekeron (Instrolex)</td>
<td>Shielded Black and White Pairs</td>
</tr>
</tbody>
</table>

7.3.30 Wire Duct and Strapping

7.3.30.1 Where wiring is not run on cable tray in cable zones, wires shall be run in slotted insulated wiring duct fitted with a snap-on lid.

7.3.30.2 The slots shall be of the ‘open’ type so that it is possible to install or remove a wire without threading it through a slot.

7.3.30.3 Ducts shall not to be filled to more than 75 % of their full wiring capacity at any point within the duct after field cables have been installed. Care shall be taken to ensure that field cabling is allowed for in the duct sizing.
7.3.30.4 Where ducts are mounted upside down, the wiring shall be tied/ supported to prevent the duct lid being forced open by the weight of wiring upon it.

7.3.30.5 Plastic duct or cable trays shall also be provided for accommodating the incoming cable cores from the point of cable entry to the unit terminal block.

7.3.30.6 Plastic Duct shall be mounted far enough from top to bottom of control gear to allow easy removal for service to remove and install associated wiring.

7.3.30.7 Where it is not practicable to run the wiring in ducts, wires shall be run in looms using flexible plastic spiral and cable ties at suitable intervals.

7.3.30.8 Wiring looms shall be supported adequately by a suitable approved means.

7.3.30.9 Ducts shall be arranged to allow wiring passing through the slots to be taken as directly to the terminals as possible.

7.3.30.10 Access to terminals shall not be impeded by the ducts.

7.3.30.11 Ducts shall not interfere with the mounting of equipment on any surface and vice versa.

7.3.30.12 Duct fixings shall not have sharp projections inside the duct which could damage cable insulation. Nylon set screws or nylon dome nut duct fixings are preferred.

7.3.30.13 The weight of wiring looms shall not cause any undue strain on the conductor strands or insulation. In particular, where a wiring loom crosses a door joint, the loom shall be arranged so that flexing across the hinge point is reduced to a minimum, and the wiring is firmly anchored on both sides. Permanent cable fixing supports shall be supplied on all hinged panels.

7.3.30.14 All groups and bunches of wires shall be run on sections of the cubicle that are free from projections such as small studs, etc. that may damage the conductor insulation.

7.3.30.15 Where wires pass through holes in panels, suitable bushes or plastic grommets shall be used.

8. Control System

8.1. PLC/SCADA/Control System

8.1.1 PLC Equipment and Remote IO - Location

8.1.1.1 PLC equipment shall be located within the switchroom in separate dedicated sections of the main switchboard or MCC or as a standalone panel.

8.1.1.2 All equipment shall be arranged to simplify servicing and shall be readily accessible for routine inspection, testing, normal replacement and maintenance of components without the necessity to dismantle or remove other equipment or cabling.

8.1.1.3 For hot standby PLCs each PLC shall be physically separated in separate buildings. If this requirement cannot be met, then approval is required from Unitywater. If approval is given to install PLCs within the same building/room then at a minimum the PLCs shall be separated into separate physical compartments of the switchboard or MCC or in physically separate panels within the same room.
8.1.2 General

8.1.2.1 PLCs shall include a processor, inputs and outputs, communications interface, watch dog timer and real time clock/calendar and all other facilities necessary to ensure successful operation.

8.1.3 Processor

8.1.3.1 The processor shall be from the range identified in the Mandated Equipment List in Appendix 1. Inputs and Outputs.

8.1.3.2 General requirements are as follows:

- Capacity: The requirements for inputs and outputs as determined by the I/O list;
- Labelling: Each input and output shall be clearly identified;
- Surge Withstand: Surge withstand capability of each input and output shall comply with IEEE C37.90.1;
- Isolation: Galvanic isolation shall be provided;
- Fuses: Each module shall have a dedicated fuse and shall include blown fuse indication and alarm initiation.

8.1.3.3 Analogue IO shall be from the range identified in the Mandated Equipment List in Appendix Error! Bookmark not defined.

8.1.3.4 Digital IO shall be 24 VDC and shall be from the range identified in Mandated equipment List in Appendix Error! Bookmark not defined.

8.1.3.5 Input and Output Allocation requirements are:

- Whenever possible, signals shall be allocated to input and output modules in a manner consistent with the process plant equipment ensuring that the failure of any one module does not affect more than one item of plant or equipment.

8.1.3.6 Spare Inputs and Outputs requirements are:

- Following commissioning of the plant, at least 1 or 20% (whichever is greater) of each type of input and output module shall be available as installed spare;
- Similarly, the PLC and each remote IO rack shall be able to accommodate at least two additional input and/or output modules in the future. Sufficient space in the installed input/output module equipment racks shall be provided for the future modules.

8.1.3.7 Termination requirements are:

- Input/Output modules shall be provided with detachable terminal strips to facilitate module exchange without reference to the panel wiring;
- Each wire shall be identified with the I/O number.

8.1.3.8 Diagnostic Function requirements are:
• The PLC CPU shall constantly perform self-checks to identify any memory, system program or user programme faults;
• The power supply, battery, I/O bus and cycle time shall also be monitored.

8.1.3.9 LEDs shall be incorporated in the PLC hardware to provide the following indications:
• Power supply;
• CPU running/stopped;
• Fault condition;
• External communication/fault error.

8.1.3.10 It shall be possible to differentiate the following fault conditions using the programming unit diagnostic functions:
• User programme error;
• System programme error;
• Memory fault;
• Bus fault;
• Watchdog timer;
• Power supply error; and
• I/O configuration error.

8.1.3.11 In the case of a user programme error, it shall be possible to simply extract the exact nature and location of the error using the programming unit diagnostic functions.

8.1.4 Reaction to Faults

8.1.4.1 In case of abnormality such as power supply or CPU failure, all outputs shall de-energise.

8.1.5 Self - Test

8.1.5.1 The PLC shall be provided with a self-test facility which can be activated by service personnel only. This facility shall test the correct operation of the major elements of the PLC.

8.1.6 Power Supply

8.1.6.1 The PLC shall be suitable for operation from a nominal 24 VDC power supply. The PLC power supply shall include galvanic isolation complying with that specified for the digital inputs.
9. Instrumentation Technical Specifications

9.1. General Technical Requirements

9.1.1 General

9.1.1.1 Instrumentation includes primary measuring elements and associated instrument transmitters for sensing of physical plant variables for monitoring and/or control purposes.

9.1.1.2 The most suitable type of instrument shall be selected for each application. Suitability shall be assessed based upon reliability, response time, accuracy and the amount of maintenance required. Instrument make and model shall be in accordance with the Mandated Equipment List.

9.1.1.3 Instruments shall be bus powered or loop powered. Separately supplied instruments are not allowed.

9.1.1.4 All instruments shall be supplied from UPS backed systems and shall have all measurements integrated into the plant control system.

9.1.1.5 Analogue instruments shall use Profibus PA communication protocol or 4-20 mA HART communication protocol only. No other field bus signal types will be considered. Transmitters providing the specified signal types shall be located as close as possible and preferably integral to process elements. Transmitters shall be provided by the same vendor and shall be specifically designed to work with the process element.

9.1.1.6 All instruments shall have a local display in the field with the display indicating absolute values in metric engineering units. 0-100% scales are not acceptable.

9.1.1.7 Wherever practicable, all controls and instrumentation located in the field shall be conveniently grouped for operational ease.

9.1.1.8 Where an analogue instrument is field mounted its signal shall be surge protected both local to the instrument and local to the associated PLC analogue card.

9.1.1.9 All instruments with data exchange capability shall be configured for remote and online interrogation, configuration and diagnostics over the communications channel with the relevant software installed on the Engineering Workstation.

9.1.1.10 Discrete outputs of all digital instruments shall be voltage-free contacts rated for at least 1A at 250V AC and 1A at 24V DC.

9.1.1.11 Instrumentation earth bars shall be provided at convenient locations throughout the installation.

9.1.1.12 Where screened signal wires are specified, screening shall be continuous from the signal source to the receiver. Earthing of the screen shall be at the MCC/PLC end only and shall be achieved by connection to the instrument earth bar. Heat shrink shall be fitted to the ends of instrument cables.

9.1.1.13 Final connections to instruments and similar equipment, which are withdrawable from its mounting, shall be made with flex entries in PVC double insulated flex not less than 0.5 mm². Sufficient length, neatly strapped, shall be provided to permit easy withdrawal of equipment.
9.1.1.14 Special calibration devices and equipment are to be supplied e.g. programmers, cal-cubes, etc. where required.

9.1.1.15 All underground equipment shall be installed within a suitably sized pit. Pits shall also be provided with adequate drainage to the plant or a sump pump shall be installed.

9.1.2 Accuracy

9.1.2.1 The accuracy of each instrument shall be within +/-2.5% of span unless otherwise required for process control.

9.1.2.2 Accuracy shall be defined as follows:

- For primary elements and their associated signal converters/transmitters: The accuracy shall relate the analogue signal output to the physical process variable;
- For secondary instruments, accuracy shall relate the output signal, indication or pen record (as appropriate) to the analogue input signal.

9.1.2.3 All instruments shall be suitable for continuous unattended operation and shall maintain their rated accuracy with a minimum of maintenance or need for calibration and adjustment.

9.1.3 Circuits and Components

9.1.3.1 Circuits and components shall be standardised for all similar applications to facilitate design, construction, testing, operation, maintenance and calibration. They shall be readily available within Australia and be arranged and designed to form a simple, safe and reliable system allowing rapid removal and renewal of components as required.

9.1.3.2 Integrated circuit devices shall be used wherever possible.

9.1.3.3 All equipment shall be suitable for operation in the vicinity of other electrical equipment and shall be immune to electromagnetic interference when subjected to field strengths up to 10 V/m over a frequency range of 10 kHz to 1000 MHz.

9.1.3.4 Electromagnetic interference and high frequency distortion of the terminal voltage generated by the operation of equipment shall not exceed the limits defined in AS CISPR 14.1. The generation of harmonics of the mains frequency shall not exceed the limits defined in AS/NZS 61000.3.6.

9.1.3.5 Instrumentation earthing shall be to a separate earth bar in switchboards or control panels.

Output

9.1.3.6 The analogue output of all electronic signal converters, transmitters, controllers, etc. shall be 4-20 mA.

9.1.3.7 Discrete outputs (on/off) of all electromechanical equipment such as flow switches, pressure switches, level switches, valve position switches, relay circuits, etc. and of all electronic switching devices such as electronic level and limit switches, etc. shall be voltage-free contacts rated for at least 1 A at 250V AC and the voltages/currents shall be shown on the drawings. In general the above will be 24V DC.
Power Supply Units - DC Power Supply

9.1.3.8 Instruments shall be of the "two wire" type deriving electrical power from the loop 24 VDC supply.

9.1.3.9 The DC supply available within the Plant shall be 24 VDC ± 10%.

Power Supply Units - AC Power Supply

9.1.3.10 Where an instrument cannot be supplied with 24V DC and a separate power supply is required, integral power supplies shall be provided to allow reliable operation directly from a UPS backed power supply.

9.1.3.11 Surge reduction filters shall be provided to protect all instrument power supplies against input over-voltage and mains borne sags, surges and impulses originating from lightning, switching operations or other causes. Common and normal mode noise rejection and isolation characteristics of the supplies will be adequate to allow for reliable operation. Voltage and frequency regulation shall be provided as necessary.

9.1.3.12 Instruments shall be powered from a UPS via a UPS Distribution Board for 240V AC instruments or 24V DC power supply and 24V DC circuit breaker load centre in the MCC for 24V DC instruments. All instruments located externally to a facility (e.g. located outside of a building) requiring a separate power supply (i.e. 4 wire instruments) shall have its power supply surge protected at each end.

PLC I/O and Instrument Surge Arresters

9.1.3.13 Comprehensive surge protection shall be provided for all low voltage and instrument cabling entering or leaving a building.

9.1.3.14 In particular, all 4 – 20 mA instrument loops shall be provided with arrestors at the instrument, converter and the PLC terminals. The arrestor shall be a self-resetting single-phase 20 kA unit with a clamp voltage of not in excess of 36 V with a maximum line current of 1500 mA rms.

9.1.3.15 All 24 VDC, status and indication circuits shall be fitted with arrestors at the switchboard terminals at each PLC slot or remote IO module. The arrestor shall be suitable for balanced and non-balanced circuits, a surge current up to 10 kA and a clamp voltage of not in excess of 36 V.

9.1.3.16 All field communications devices shall incorporate surge protection.

9.1.4 Field Instrumentation

Enclosures

9.1.4.1 All electrical components of field instruments shall be contained in hose proof and dustproof stainless steel or marine grade aluminium enclosures to IP65. Tapped cable entries shall be provided to accept cable glands. All gland entries not used shall be suitably sealed.

Indicators

9.1.4.2 Indicators shall be of the digital display type of flush mounting pattern utilising a LCD.

This document may not, in whole or part, be copied, photocopied, reproduced or translated without prior consent from the CEO, Unitywater. Printed copies are uncontrolled.
9.1.4.3 Indicators shall be selected to allow for accurate reading at a distance of 3 m from the unit in the installed location. Indicators shall be scaled in engineering units as defined in instrument data sheets.

9.1.4.4 Indicators shall include continuously variable span and zero adjustments. Adjustment shall be provided via inconspicuous front panel controls.

9.1.4.5 Each indicator shall accept a 4-20 mA signal input with a maximum input resistance of 100 Ω.

9.1.4.6 Indicators shall be mounted in enclosures as specified in Section 9.1.4.1.

Mounting of Instruments and Enclosures

9.1.4.7 Mounting methods shall at all times be suitable for the mass and duty of the device and the environment into which it is to be mounted. Instruments shall be easily accessible and maintainable in position.

9.1.4.8 Sunshades shall be provided for all field instruments to protect against mechanical damage, solar heating and UV damage where exposed to these conditions in the installed position.

9.1.4.9 Instruments and enclosures should only be located in readily accessible locations without the need to enter confined spaces and taking into consideration environmental requirements such as hydrogen sulphide corrosion.

9.1.4.10 Where instruments use transmitters that are separate from the sensor, and the transmitters are not housed in enclosures, the transmitter shall be mounted on a stainless steel bracket with a sunshade for protection against mechanical damage, solar heating and UV damage.

9.1.4.11 Indicators and transmitters with integral displays shall be mounted to avoid exposure of the LCDs and membrane keypads to direct sunlight. Orientation of the displays and indicators shall be facing south or east. Where this is not practicable approval is required from the Engineering personnel for the most suitable installation location.

9.1.4.12 Displays and indicators shall be mounted at a height of between 500 mm and 1600 mm above the surrounding finished ground level.

9.1.4.13 Where instruments are mounted in or extend into tanks or other vessels, the instrument shall be mounted to enable ease of removal for cleaning, operation and maintenance requirements. Brackets used shall preferably be proprietary in nature and will not be put under undue stress from normal operation due to the weight of the instrument or the process it is measuring.

9.1.4.14 No instrument shall be direct buried. If an instrument is required to be installed below ground then a suitably designed and accessible pit shall be provided.

9.2. Flow

9.2.1 Volumetric Flow – Differential Pressure

9.2.1.1 The material for orifice plates should be compatible with the fluid handled. The preferred material is type 316 Stainless Steel.

9.2.1.2 For liquids with entrained solids, eccentric orifice plates may be used subject to the approval of the Unitywater Engineering personnel. Alternate design (multi-hole)
orifice plates which may reduce the straight run piping requirements may be used subject to the approval of the Unitywater Engineering personnel. No drain or weep holes shall be made in any flow orifice plate.

9.2.1.3 Use of straightening vanes shall be subject to the approval of Unitywater.

9.2.1.4 Square root extraction shall be performed in the transmitter.

9.2.1.5 The flow rates and choice of differential pressure transmitters shall be as follows:

9.2.1.6 Normal flow rate shall be between 70 % and 80 % of the full scale flow provided that the anticipated minimum and maximum flow rates will be between 33 % and 95 % of the full scale flow and the accuracy of the transmitter is at least 0.2 % of the calibrated span.

9.2.1.7 Where the rangeability required is between 33 % and 95 %, a single transmitter may be used.

9.2.1.8 Where the rangeability required is greater than 33 % and 95 %, dual transmitters may be required and shall be submitted for approval.

9.2.1.9 Where a differential pressure transmitter is used as a flow input to safety system, the transmitter range shall be such that the trip point is at least 33% of the full scale calibrated span.

9.2.1.10 Orifice plate Beta ratios (orifice diameter/pipe inside diameter) shall be limited to values between 0.3 and 0.7.

9.2.1.11 The preferred DP cell range is 25 kPa. Common alternatives are 10 kPa and 50 kPa and shall be subject to the Unitywater Engineering personnel approval.

9.2.1.12 Orifice size, flange size, flange rating and instrument number shall be stamped on the upstream side of each orifice plate and shall be visible when the orifice plate is installed.

9.2.1.13 Orifice plate flow meter flanges shall have the following requirements:

- Flanges shall be in accordance with ASME B16.36;
- Flanges shall be weld neck type;
- Pressure taps shall be equipped with round head or stock plugs;
- Flange rating, facing and finish shall be as per the piping specification, or ASME Class 300 minimum, whatever is greater.

9.2.1.14 Flange tapping arrangement shall be utilised for all orifice plate installations.

9.2.1.15 Differential pressure (DP) transmitters shall be remote mounted to minimise or eliminate vibration issues but lengths of impulse piping should be kept to a minimum. The following guidelines may be used to determine limitations for direct mounting of transmitters:

9.2.1.16 DP transmitters to be direct mounted in lagged service up to process temperature of 250 °C.

9.2.1.17 DP transmitters installed on process temperatures above 250 °C will require remote seals of fill fluids suitable for such temperatures.
9.2.1.18 DP transmitters to be direct mounted in flushed services for process temperatures of flush fluid within the Vendor supplied temperature limits for the transmitter fill fluid (no dead legs exist for these installations and therefore no cooling).

9.2.1.19 For installations in vertical pipelines the direction of flow shall be downwards for wet gas or saturated steam and upwards for liquids.

9.2.1.20 Upstream straight length requirements shall be in accordance with the manufacturer's requirements.

9.2.1.21 DP transmitters in gas service shall be mounted above the flow element.

9.2.1.22 DP transmitters in liquid service shall be mounted below the flow element.

9.2.1.23 The static pressure range and maximum working pressure of the pressure transmitter shall be suitable for the application. Positive over-range protection shall be provided.

9.2.1.24 The differential pressure transmitter shall be loop powered and shall provide a 4-20 mA output signal proportional to the calculated flow rate.

9.2.1.25 The static pressure range and maximum working pressure of the pressure transmitter shall be suitable for the application. Positive over-range protection shall be provided.

9.2.1.26 The transmitter shall include independently adjustable zero and span adjustment and adjustable internal signal damping. A digital display shall be included at the transmitter.

9.2.1.27 The differential pressure transmitter shall be supplied with a three valve manifold.

9.2.2 Volumetric Flow – Magnetic Flow Meters

9.2.2.1 Magnetic flow meters may be used in water service. Magnetic flow meter excitation shall be 24V DC. The flow transmitter may be integral to the meter body, but preferably remotely mounted to enable easy viewing in the field.

9.2.2.2 An earthing ring with protecting edge shall be supplied by the meter vendor. The electrodes shall be fixed type. The electrode material of construction shall be 316 SS, unless other material is required for corrosion resistance (e.g. Hastelloy C).

9.2.2.3 The sensor shall be suitably lined to resist wear and corrosion. Where negative pressure (i.e. vacuum) is possible, the lining may be omitted.

9.2.2.4 The signal cables between the sensor and the transmitter shall be screened.

9.2.2.5 'Smart' communications to the transmitter shall allow remote interrogation, diagnostics and reconfiguration.

9.2.2.6 The transmitter shall incorporate all range settings, zero settings and necessary controls and shall produce a linear 4-20 mA flow signal. The transmitter shall have a digital display to show the flow rate and total flow volume. The transmitter 4-20 mA flow signal shall have a measurement accuracy not exceeding ± 0.25 % of measured flow for velocities ± 0.5 m/s.

9.2.2.7 The flow meters shall have the capability for on-site verification.

9.2.2.8 Earthing rings shall be installed and correctly connected for all installation conditions.
9.2.3 Volumetric Flow – Other

9.2.3.1 Averaging pitot tubes or thermal dispersion meters may be used for some applications with the Engineer’s approval. Installation of averaging pitot tubes shall be such that they are removable on line, unless indicated otherwise.

9.2.3.2 In-line variable area flow meters (rotameters) shall only be used on non-critical purging and injecting services and these shall have 316 SS bodies with magnetic followers (unless other material is required for corrosion resistance). The use of glass tube type shall be subject to the approval of the Engineer. In-line variable area flow meters shall be installed in the vertical position.

9.2.3.3 Each Rotameter shall be of the tapered tube and float type, of straight through construction with flanged or threaded end connections as required.

9.2.3.4 The rotameters shall have tempered glass tubes, stainless steel end fittings and stainless steel floats. The rotameters shall incorporate a metering tube that can be removed and cleaned without removing the meter body from the line.

9.2.3.5 The rotameters shall be selected to suit the range for each individual application and shall be accurate to ± 2 % of full scale over a minimum turndown ratio of 10:1. The rotameters shall be fitted with a direct reading scale, nominally 250 mm long and scaled in litres/second as appropriate for the flow ranges of each application.

9.2.3.6 Where switching is required in a rotameter, a magnetically activated switch arrangement providing a voltage free contact shall be provided for 2 wire connection.

9.2.3.7 Positive displacement flowmeters may be used for local flow indication/totalising in non-critical process lines (e.g. utilities).

9.2.4 Mass Flow – Coriolis

9.2.4.1 For liquid mass flow applications, Coriolis type mass flowmeters are the preferred choice. Straight tube type Coriolis mass flowmeters are preferred over bent tube type Coriolis mass flowmeters. Coriolis mass flowmeters shall have a 316 SS sensor unless process requirements dictate the requirement for Hastelloy C.

9.3. Flow Switches

9.3.1 Flow detection on hydraulic systems shall be non-insertion type instruments; paddle type flow switches shall not be used.

9.4. Level

9.4.1 General

9.4.1.1 Where more than one level transmitter is installed on a vessel, both shall be calibrated to the same operating span and level wherever possible. Where level gauges (magnetic or glass) are installed alongside other level instrumentation the level gauge span shall match or exceed that of the vessel operating range.

9.4.1.2 Where vessels have both level instruments in both control and shutdown applications, different types of level transmitters shall be installed to reduce common mode failures. For continuous level measurement, the following level transmitter types are the preferred choice:

- Magnetic follower style gauges with magnetorestrictive level transmitters for use in shutdown applications’
• Ultrasonic or Hydrostatic level transmitters for use in control applications. Guided wave radar level transmitters may also be considered.

9.4.1.3 Use of capillary filled Differential Pressure transmitters with diaphragm seals may be considered subject to the approval of Unitywater Engineering Personnel.

9.4.1.4 The lower connection to a vessel should not be taken from the bottom of the vessel to minimise fouling of tappings and ensure full range of measurement. Where bottom of vessel nozzle connections cannot be avoided, an up-stand in the vessel should be installed.

9.4.1.5 All level instruments shall be located such that they are visible and accessible for calibration and maintenance or repair. No permanent access platforms will be provided to gain access to any difficult to reach instrumentation. This access will be provided by temporary or mobile access platforms as required.

9.4.1.6 All continuous level measurement instruments shall be provided with a means of in-situ calibration and testing.

9.4.1.7 Level bridles and gauges shall be supplied with vent and drain valves that comply with the relevant Unitywater isolation standards.

9.4.1.8 On liquid/liquid interface service the vessel top instrument connection shall be submerged in the lower density fluid under all normal operating conditions.

9.4.1.9 Level in plant vessels and equipment should be displayed in terms of 0-100 % working range unless specified otherwise by the Principal's Representative. Any special application for a level switch (e.g. sump pump auto-start/stop) shall be approved by Unitywater Engineering Personnel.

9.4.2 Magnetic Level Gauges

9.4.2.1 Magnetic level gauges are preferred for many applications but special consideration is required as:

• These gauges are sensitive to low Specific Gravity (SG) applications. Actual operating SG is to be verified prior to purchase with laboratory testing where possible.

• Floats are very susceptible to over pressure. The maximum pressure (relief case) of the vessel shall be considered.

• They may not be suitable for interface applications where the operator is required to view the liquid.

9.4.2.2 When magnetic level devices with 4-20 mA transmission are used, consideration during design shall be given to the impact of “loss of float” by the analogue transmitter. The data sheet shall specify the safety requirement for “loss of float” by the transmitter (i.e. signal fail high or low).

9.4.2.3 Level transmitters mounted on magnetic level gauges can only be used in clean, non-solidifying, non-crust forming services. In dirty, solidifying, crust forming services the preferred instrument for level indication and control shall be non-contact radar transmitters. Where dielectric limitations preclude the use of this technology, capillary type seal DP transmitters shall be considered but require the approval of Unitywater Engineering Personnel.

9.4.2.4 The following notes apply if the gauge is fitted with a level transmitter:
• The level transmitter should be fitted to the gauge by the Vendor.
• Transmitter shall be perfectly parallel and in contact with the float chamber over its entire length.
• Sufficient cable length shall be provided to allow the adjustment of height of the transmitter of at least ±30% without disconnecting terminations or unclipping cable from supports.
• The scale on the level glass shall be marked, as a minimum, at 0 %, 50 % and 100 % corresponding to the transmitter output.

9.4.3 Ultrasonic Level Transmitter

9.4.3.1 Provision shall be made at the transmitter for independently adjustable span and zero adjustment and adjustable internal damping. The transmitter shall incorporate a LCD. Accuracy shall not be less than ± 0.25 % of maximum range or 6 mm whichever is the greater.

9.4.3.2 The transmitter shall have ‘Smart’ communications and shall allow remote interrogation, diagnostics and reconfiguration.

9.4.4 Differential Level Transmitters (Ultrasonic Type)

9.4.4.1 Differential ultrasonic level instruments specifications shall include those given for ultrasonic level instruments above. Two sensors shall connect into the one transmitter and the 4-20 mA level output signal shall be calculated by the transmitter as the difference in level detected by the two sensors.

9.4.4.2 The transmitter shall have ‘Smart’ communications and shall allow remote interrogation, diagnostics and reconfiguration.

9.4.5 Hydrostatic Type Level Transmitters

9.4.5.1 Each electronic hydrostatic level transmitter shall provide measurement referenced to atmosphere either using a capillary tube connected to the sensor and vented to atmosphere at a connection box or absolute pressure measurement at the sensor and atmospheric pressure measurement at the transmitter.

9.4.5.2 The hydrostatic level transmitter shall be loop powered and shall provide a 4-20 mA output signal proportional to the measured level. The transmitter or connection box shall include a LCD with ‘Smart’ communication capability.

9.4.5.3 The range and maximum working pressure of the transmitter shall be suitable for the application.

9.4.5.4 The transmitter shall include temperature compensation and adjustable internal signal damping. Accuracy shall not exceed 0.2 % of range at a maximum turndown of 1:10.

9.4.6 Guided Wave Radar

9.4.6.1 Radar level measurement for process vessels shall be considered where the relative dielectric constant of the measured medium is suitable for this technology.

9.4.6.2 Radar transmitters shall only be installed in a manner that allows their total removal on line without impact on the process. For this reason, radar transmitter installation
will normally be via an external cage with isolation valves to the main vessel. Installed in this way, guided wave technology is the preferred option.

9.4.6.3 Radar level measurement shall not be used for interface applications unless specifically approved by Unitywater Engineering Personnel. Installation of radar element shall meet manufacturer’s criteria for distance from sidewalls and internal obstructions.

9.4.7 Level Bridles

9.4.7.1 Level bridles shall be utilised to minimise the connections on a vessel and to facilitate instrument testing. Sufficient block, vent and drain valves shall be installed to permit in-place testing of instruments without the need to shut down the process.

9.4.7.2 The same level bridle shall not be used for Plant Control System (PCS) and for dedicated safety level instruments. Where several level instruments are required on a vessel, a separate bridle shall be used by each level instrument.

9.4.7.3 Bridle process interfaces shall be via DN50 flanges having a minimum rating of ASME class 150. Level bridle material of construction shall be 316 SS unless another material is required for corrosion resistance.

9.4.7.4 Bridles shall be equipped with DN20 (minimum) vent and drain valves. Where required as per process design shown on the P&IDs, drain valves shall be piped into the facility drain system.

9.4.7.5 No bridle may connect across more than two adjacent phases on a three-phase vessel. In this event, a third balancing connection is required to accommodate the middle phase.

9.4.7.6 Careful consideration must be given to the placement of the taps in relation to the normal location and range of the interface. In some cases, additional taps may be required to ensure continuous and correct measurement of the interface.

9.4.7.7 Bridles shall not be used under the following circumstances:

- In low temperature (< 0 °C) service;
- On packed sections, across filter pads, demister pads, in viscous service and in applications where materials being handled contain high concentrations of solids.

9.4.7.8 No vertical dog-legs will be allowed in making level connections to bridles.

9.4.8 Differential Pressure Level

9.4.8.1 Response times and temperature effects are to be calculated (as % of span) for each remote seal application (by the Vendor), over the range of process and ambient temperatures for the application. In particular, the effects on accuracy shall be reviewed for the case when the top seal temperature increases suddenly as the hot process liquid rises. Where the effects on accuracy are unacceptable alternative measurement techniques should be considered.

9.4.9 Level Gauge Glasses

9.4.9.1 Gauge glasses in hydrocarbon service shall be high pressure, flat glass type made up of individual 350 mm nominal length sections connected by piping. Maximum length of gauge glass assembly shall be 3000 mm.
9.4.9.2 If the length is over 1500 mm an intermediate support shall be provided. Block valves shall be provided in addition to the offset-type cocks. Excess flow type isolation cocks shall be fitted as standard.

9.4.9.3 Reflex type gauges are only suitable for clean liquid services. Transparent sight glasses shall be used for other services.

9.4.9.4 Integral illuminators shall only be fitted to transparent sight glasses where the process fluid is such, that illumination is required for sighting of the level. No vertical dog-legs will be allowed in making level connections to gauge glasses.

9.4.9.5 Gauge glass shall be of such quality that it will break with an interlocking crystalline fracture without loose, flying particles (normally referred to as tempered glass). Gauge glasses shall be equipped with DN20 vent and drain valves. Drain valves shall be piped into the facility drain system.

9.4.10 Level Sensors

Capacitance Type

9.4.10.1 Each capacitance level measurement system shall consist of an electrode (or probe), an electronic unit in the head of the probe and a signal converter unit. An earthing reference shall also be supplied if necessary.

9.4.10.2 The electronic unit shall operate at a frequency suitable for the application, shall be mounted in the head of the probe and shall be encapsulated in an inherently non-corrosive, durable material to at least electrical enclosure class IP65.

9.4.10.3 Each electronic signal converter unit shall generate an isolated 4-20 mA DC current analogue output corresponding to the level and shall incorporate provision for continuous adjustment for both measurement span and zero. The signal converter shall incorporate an analogue or LED indicator with an accuracy of better than ± 5 % of full scale. The power, frequency and pulse rate shall be suitable for this application.

Level Sensors (Multiple / Single Point Conductivity)

9.4.10.4 Multipoint or single point level sensors and controllers shall be MultiTrode MTRA or MultiSmart.

9.4.10.5 Probes shall be cable suspended PVC tube body with stainless steel sensors located at 150 mm increments along the height of the probe. Each sensor shall be wired out to allow connection of all or any level to extra low voltage control equipment. Each cable core shall be numbered. The cable sheath, probe body and sensors shall be entirely suitable for long term operation in the environment in which it shall be installed. The probe shall be fitted with cable of sufficient length to terminate in the switchboard without joints, suspended from a purpose built stainless steel bracket incorporating a flexible probe cleaner.

9.4.10.6 The pump controller shall operate in conjunction with the conductivity level probe. The controller shall be self-contained to control two pumps and alarms, and shall feature
- Incremental bar graph indication of well/reservoir level;
- Selectable levels for each pump start, stop, and alarm;
• Selection of pumps to duty, standby or alternating;
• Selection of fill or empty modes.

9.4.10.7 The connection to the level probe shall include internal or external lightning protection.

9.4.11 Level Switches

Level Switches (Float Type I)

9.4.11.1 Each level switch shall be of the encapsulated, immersible, mechanical switch type. The level switches shall be Kelco Q series or K series. The switches shall not contain mercury. Each shall be supplied complete with a sufficient length of heavy duty flexible cable to provide a generous allowance for adjustment of the operating level.

9.4.11.2 All wetted materials shall be inherently non corrosive material and entirely suitable for the application.

Level Switches (Float Type II)

9.4.11.3 Each level switch shall be of the float-activated bulkhead mounting type.

9.4.11.4 Float, stem and other wetted materials shall be constructed from inherently non corrosive material and entirely suitable for the application.

9.4.11.5 Each level switch shall be provided with a voltage free, changeover contact.

Level Switches (Paddle Type)

9.4.11.6 Level switches for sensing level of non-liquid bulk materials shall be of the motor driven rotating paddle type. The detection of material is achieved by a rotating paddle with the control signal changing when material impedes rotation of the paddle.

9.4.11.7 Shafts and paddles shall be constructed from materials which are corrosion resistant to the material being sensed.

9.4.11.8 The number and size of paddle vanes shall be selected as appropriate for the density of materials sensed.

9.4.11.9 The paddle switch sensing unit shall include controls to ensure that when material impedes the rotation of the paddle that all moving parts are stationary and no wear takes place.

9.4.11.10 Each paddle switch shall satisfy enclosure class IP65 or better and shall be provided with a voltage free, changeover contact output.

Level Switches (Capacitive)

9.4.11.1 Each capacitive level switch shall consist of an electrode (or probe), and an electronic signal converter unit. An earthing electrode (or probe) shall be provided as necessary for correct operation.

9.4.11.2 The electronic signal converter shall have a sensitivity suitable for the application.

9.4.11.3 Each electrode (or probe) and all other wetted materials shall be suitable for the application.
9.4.11.4 Where the electronic signal converter is mounted in the head of the probe it shall be encapsulated in an inherently non-corrosive, durable material to at least electrical enclosure class IP65.

9.4.11.5 Each electronic signal converter shall satisfy enclosure class IP65 or better and shall be provided with a voltage free, changeover contact output.

Level Switches (Vibrating)

9.4.11.6 Each vibrating level switch shall consist of a sensor and an isolating electronic switching unit.

9.4.11.7 In addition to a true level alarm condition, the electronic switching unit shall activate the alarm contact upon detection of a damaged sensor and for a short time on power-up. Switching time shall not exceed 1 second. Accuracy of the combined unit shall not exceed 1 mm.

9.4.12 **Displacement Level**

9.4.12.1 Displacement type level instruments shall not be used.

9.4.13 **Float Devices**

9.4.13.1 Float devices may only be installed on specific non-critical applications where other measurement techniques are unsuitable, for example on sump level.

9.5. **Pressure**

9.5.1 **General**

9.5.1.1 Pressure elements shall be specified such that the steady normal operating pressure does not exceed 75% of the maximum range. Pressure elements shall be such that the process pressure does not exceed the maximum rating of the element. If the process pressure can exceed the instrument rating pressure then an adequate overpressure protection technique shall be employed. For each application, Unitywater Engineering Personnel shall approve the technique used.

9.5.1.2 Pressure sensor material of construction shall be 316 SS unless another material is required for corrosion resistance. Pressure instrument process connections shall be ½” NPTM.

9.5.1.3 In corrosive services where a direct mounted pressure element is not appropriate, a diaphragm seal shall be used. Where the pressure element will be subjected to pulsating pressures (e.g. inlets and outlets of reciprocating compressors) the following steps are to be taken:

- Element shall be specified such that normal operating pressure does not exceed 60% of maximum range;
- A pulsation damper shall be used. Dampers shall be of the non-adjustable type.

9.5.2 **Pressure Transmitters**

9.5.2.1 The pressure transmitter shall be loop powered and shall provide a 4-20 mA output signal proportional to the measured differential pressure. Smart HART transmitters shall be provided.
9.5.2.2 The transmitter shall include independently adjustable zero and span adjustment and adjustable internal signal damping. Two valve manifolds shall be supplied with each gauge pressure transmitter. Three valve manifolds shall be supplied with each differential pressure transmitter.

9.5.3 Pressure Gauges

9.5.3.1 Pressure gauges shall have the following features:
- ½" NPTM bottom entry;
- 316 SS movement;
- 100 mm diameter dial;
- Weather proof 316 SS Case (IP65 rating or better);
- Solid front;
- Shatter proof glass;
- Glycerine filled;
- Blow out back (or pressure relief vent for the cases);
- White dial with black lettering and black pointer.

9.5.3.2 Pressure gauge measuring elements shall be the C-type or helical Bourdon type. The measuring element shall be 316 SS, unless process fluid requires the use of other materials.

9.5.3.3 Pressure gauges shall be selected so that the normal operating pressure is 50-70% of the full range of the gauge.

9.5.3.4 Pressure gauges shall be able to withstand over-ranging to a pressure of 1.3 times the maximum scale reading without a permanent set that affects gauge calibration. In moderate vibration service (e.g. centrifugal pump suction), the gauges are to be liquid filled with glycerine or equivalent.

9.5.3.5 Where pipework is subject to mechanical vibration, pressure gauges shall be mounted adjacent to the pipework and connected to the pipework tapping via pipework. Where specified or as otherwise required where gauges are subject to a process medium of high temperature that would affect operation, a siphon shall be provided to isolate the medium from direct contact with the gauge.

9.5.3.6 Pressure gauges shall be accurate to ±1% of full scale.

9.5.4 Pressure Switches

9.5.4.1 The adjustable set point range shall be such that the noted setpoint falls between 30 and 70% of the adjustable range. The switch shall be of the automatic reset type with an adjustable switching differential.

9.6 Temperature

9.6.1 General

9.6.1.1 All temperature instruments (dial thermometers, thermocouples and RTDs) shall be installed in flanged thermowells. Exceptions (e.g., skin temperatures) shall be approved by Unitywater Engineering Personnel.
9.6.1.2 Temperature instruments shall be ranged to include start-up and abnormal operating conditions.

9.6.2 Dial Thermometers

9.6.2.1 Field temperature indicators (dial thermometers) shall be of the bimetallic type, with a 100 mm dial size unless otherwise specified. Dial thermometers shall have adjustable every-angle heads. The element diameter is nominally 6 mm with a ½” NPTM connection.

9.6.2.2 In applications where bimetallic thermometers are not suitable, filled systems may be used. The preferred materials for filled systems are 316 SS wetted parts with gas fill. All such applications are to be approved by the Principal’s Representative. Where required for readability or protection from vibration, indicators shall utilise a fully compensated filled system with a 316 SS armoured capillary tube and with a remote reading dial.

9.6.2.3 Mercury thermometers shall not be used.

9.6.2.4 Where possible, dial thermometers shall comply with the standard manufacturer’s ranges.

9.6.3 Resistance Temperature Detectors

9.6.3.1 In general, Resistance Temperature Detectors (RTDs) shall be utilised for temperature measurement.

9.6.3.2 Each resistance thermometer shall include a 3-wire platinum RTD complying with IEC 60751 (R₀ = 100 Ω). 4-wire RTDs may be used where required. 2-wire RTDs shall not be used. The sensing element shall be sealed in a ceramic former and enclosed in a stainless steel sheath. Sensing currents of up to 10 mA shall not have a significant effect on accuracy.

9.6.3.3 Installation of the RTD, including wiring to the associated resistance to current converter, shall comply with BS 1041-3. A 3-wire circuit shall be used between each RTD and the transmitter. The transmitter shall be located in the RTD connector head.

9.6.3.4 Resistance to current converters shall be of the "two wire" type deriving electrical power from the loop 24 Vdc supply. Transmitters shall include continuously variable span and zero. The output shall be a 4-20 mA signal linear with respect to temperature.

9.6.3.5 Accuracy shall be ±0.5% of span or better.

9.6.3.6 RTDs shall have 6 mm OD 316 SS sheaths. Sensors shall feature spring loaded heads in their assemblies.

9.6.3.7 Where RTDs are not suitable, i.e., due to required measuring range, chromelalumel (Type K) thermocouples may be used.

9.6.3.8 Where process temperatures allow, elements shall be direct connected to the temperature transmitter. Where remote indication is required a loop powered indicator shall be installed.

9.6.3.9 Thermocouples shall be Mineral Insulated Metal Sheathed (MIMS). These thermocouples shall be 6 mm OD with insulated junctions and 316 SS sheathed. Thermocouple terminal heads shall be spring loaded.
9.6.3.10 Use of high temperature rated cable shall be considered if thermocouple extension and RTD cables are run close to hot surfaces.

9.6.4 Thermowells

9.6.4.1 Unless otherwise approved by Unitywater, thermowells shall be constructed from barstock of 316 SS material (flanges can be welded on). Where fabricated wells are allowed, weld and stress relieving procedures shall be provided.

9.6.4.2 For vessels, thermowell flanged connections shall have a minimum rating of ASME class 300. For piping, ASME class 150 flanged thermowells may be used in ASME class 150 pipework.

9.6.4.3 Thermowells shall be installed in sections of pipe with a minimum diameter of DN100. Where thermowells are required to be installed in pipework of diameter DN80 or smaller, reducers shall be installed either side of the thermowell to increase the pipe diameter to DN100.

9.6.4.4 Thermowells shall be of the tapered shank design and have a DN50 flanged process as shown in Figure 1.

Figure 1: Thermowell Diagram

9.6.4.5 All thermowells shall be supplied with material certification, pressure test certificate and full dye penetration certificate. Thermowell NDT shall be in accordance with ASME 5 or AS 2062 with certificates issued by a NATA certified authority.

9.6.4.6 Thermowells shall be uniquely tagged. "U" length shall be permanently engraved on the thermowell flange. Thermowell shank tip position shall be within ±10% of the pipe centreline. A process connection plug and chain shall only be supplied for wells designated for test insertion usages.

9.6.4.7 Thermowell design calculations in accordance with ASME PTC 19.3 TW-2010 shall be provided for all thermowells installed in flowing lines.
9.6.4.8 All thermowells shall be assessed for resonance effects via wake frequency calculations - worst case wake frequencies shall be < 0.8 of the calculated wake frequency.

9.6.4.9 Bending stress calculations shall be provided for all thermowells.

9.6.4.10 Insertion lengths shall be supplied as indicated on the data sheets.

9.6.5 Temperature Switches

9.6.5.1 Temperature switches (thermostats) shall be Danfoss UT/KP. The switches shall not contain mercury.

9.6.5.2 Where required a copper tube protected capillary shall be provided for connecting the switch mechanism to the remote bulb installation.

9.6.5.3 A calibrated adjustment for the set point shall be provided. The adjustable set point range shall be such that the noted set point falls between 30 and 70 % of the adjustable range. The switch shall be of the automatic reset type with an adjustable switching differential (except where noted).

9.7. Analysers

9.7.1 General

9.7.1.1 The selection and commissioning of facility analysers is viewed as warranting special consideration. All analysers, including sampling handling systems shall be approved by the Principal’s Representative.

9.7.1.2 Unless the actual analyser model number is currently proven on site, no analyser or sampling handling and recovery system shall be introduced into the facility without it first complying with a guaranteed Performance Test (PT) agreed between the Unitywater and the analyser Vendor. Lab sample points shall be provided on all analysers.

9.7.1.3 Auto changeover manifolds to be provided on carrier gases. Low carrier pressure to be alarmed to PCS. Low sample flows to be alarmed to the PCS.

9.7.1.4 In general, analyser outputs shall be 4-20 mA loops with ‘Smart’ communications protocols as described in Section 9.2.1.

9.7.1.5 Common hardware alarms for each analyser to be provided and alarmed to the Plant Control System.

9.7.1.6 Liquid samples shall be returned to process.

9.7.1.7 Analysers are to be mounted as close as practical to the sample point in a weatherproof naturally vented shelter or prefabricated analyser house subject to Company approval.

9.7.1.8 Local flow, pressure and temperature indications are to be provided on analyser sample handling systems. Calibration samples are to be representative of the process stream and last for a minimum of three months at three validations per week. Analysers shall have power isolators mounted adjacent to each analyser in the field.

9.7.1.9 Fast loops are to be provided for all liquid analysers. Local flow and pressure indication shall be provided on all fast loops. The analyser shall have remote...
shutdown and start-up wired from the PCS so that the operator can take the analyser out of service during unit upsets etc.

9.7.2 Dissolved Oxygen

9.7.2.1 Dissolved Oxygen analysers shall use either the Clark Principle or Luminescence Quenching method for measurement. Dissolved Oxygen sensors shall be provided with temperature compensation.

9.7.2.2 Dissolved Oxygen sensors shall have a measurement range of up to 20 mg/L with an accuracy of at least ±2 % across the measurement range. The system shall also feature auto-cleaning and auto-calibrate functions.

9.7.2.3 The Dissolved Oxygen instrument shall be supplied with:
- Submersible sensor with auto-cleaning system;
- Mounting hardware (arm or float);
- Sensor cable;
- Transmitter.

9.7.2.4 ‘Smart’ communications to the transmitter shall allow remote interrogation, diagnostics and reconfiguration.

9.7.3 Conductivity

9.7.3.1 The conductivity probe shall consist of a primary sensor and a signal transmitter. The sensor shall be housed in one common body (minimum IP67 in accordance with AS 60529), rapid and easy servicing complete with integral cable for connection to the signal transmitter.

9.7.3.2 The conductivity probe may be contacting type or toroidal. The toroidal type conductivity sensor shall be supplied with a 1½" NPT process connection. The contacting conductivity sensor shall be supplied with a ¾" NPT process connection.

9.7.3.3 The sensor's electrodes shall be stainless steel and insulators of Tefzel and Viton, or better. The transmitter shall incorporate a built-in digital display to for the conductivity value of the measured sample and with built-in temperature compensator.

9.7.3.4 The primary sensor shall designed to continuously measure the conductivity value (between 0 and 2000 μS/cm) over a temperature range of 20 to 50 °C. The accuracy of the conductivity analyser shall be 0.5% of the full-scale reading at 25 °C with a repeatability of +0.01 % or better. The entire system shall have automatic temperature compensation.

9.7.3.5 Conversion of the conductivity measurement to the corresponding Total Dissolved Solids (TDS) reading shall be performed in the PCS.

9.7.4 pH Measurement

9.7.4.1 The equipment for the measurement of pH shall include either single combination electrodes or discrete measurement and reference electrodes.

9.7.4.2 The reference electrode shall be sealed, gel filled and non-flowing with a ceramic or similar junction that resists fouling.
9.7.4.3 Each pH electrode housing shall comply with the requirements of enclosure class IP68 (in accordance with AS 60529).

9.7.4.4 Automatic temperature compensation shall be provided for each pH measurement. The pH electrodes shall be equipped with an automatic electrode cleaning device to reduce routine manual cleaning.

9.7.4.5 The cleaning method utilised shall be entirely suitable for the process fluid monitored.

9.7.4.6 The pH electrode housing shall be manufactured from glass fibre reinforced polypropylene or similar.

9.7.4.7 An indicator should be provided as part of the unit to display the output on a scale directly calibrated in pH units, to accuracy better than ±2 % of span.

9.7.4.8 The transmitter shall include facilities for manual range changing, zero and span adjustment and for any other adjustment necessary for accurate calibration of the instrument.

9.7.4.9 All input circuits shall be isolated from the mains supply and output circuits.

9.7.4.10 The transmitter shall include functionality for sensor life and condition diagnostics.

9.7.5 Turbidity

9.7.5.1 Turbidity analysers shall utilise the 90° scattered light principle of operation.

9.7.5.2 The sensor and/or sensor housing shall incorporate measures to prevent or remove material deposits from the light source and the sensing windows.

9.7.5.3 The sensor arrangement shall also incorporate features to prevent air bubbles from interfering with measurement. Where an auto-cleaning function is incorporated this shall be configurable from the transmitter.

9.7.5.4 The transmitter shall incorporate all range settings, zero settings and necessary controls and shall produce a linear 4-20 mA turbidity signal.

9.7.5.5 The transmitter shall have a digital display to show the turbidity level. Where dry secondary calibration standards hardware is available for calibration, these shall be provided with the turbidity transmitter.

9.7.6 Density Measurement (Nucelonic)

9.7.6.1 The density sensor shall be of the nonintrusive type utilising a radioisotope and manual shutter on the source housing clamped to the outside of the pipework. A separate transmitter shall be supplied with the density sensor.

9.7.6.2 The transmitter shall be supplied via single phase power and utilise a backlit LCD display and keypad for user interface and programming. The sensor shall be provided with any proprietary leads and cables for connection between the sensor and transmitter.

9.7.6.3 The transmitter shall generate a 4-20 mA individually isolated current analogue output based on percentage of solids within the material. The transmitter shall be provided with HART capability. The transmitter shall have a typical precision of 2 g/L.
9.7.6.4 Where possible the density sensor shall be mounted with the material flowing in a vertical fashion so as to minimise errors.

9.7.6.5 Where the sensor cannot be mounted as preferred, the sensor shall be mounted with the transmitter and receiver orientated in a vertical fashion on pipework with a horizontal material flow. It shall be installed as per the manufacturer’s recommendations.

9.7.7 Chlorine

9.7.7.1 Chlorine analysers shall utilise amperometric measurement cells and shall incorporate temperature compensation and self-cleaning of the measuring cells.

9.7.7.2 ‘Smart’ communications to the transmitter shall allow remote interrogation, diagnostics and reconfiguration.

9.7.7.3 The transmitter shall incorporate all range settings, zero settings and necessary controls and shall produce a linear signal. The transmitter shall have a digital display to show the chlorine residual level and any fault diagnostics information.

9.7.8 Nitrate

9.7.8.1 Depending on process requirements, nitrate measurement shall be performed by one of the methods described below. Both methods utilise light absorption techniques.

Submersible Sensor Probe

9.7.8.2 The Nitrate analyser shall utilise the UV light absorption method for Nitrate measurement.

9.7.8.3 The Nitrate measurement system shall comprise (as a minimum):
- Submersible sensor with wiper cleaning system;
- Mounting hardware;
- Connection cable;
- Transmitter.

9.7.8.4 The transmitter shall incorporate all range settings, zero settings and necessary controls and shall produce a linear signal.

9.7.8.5 The transmitter shall have a digital display to show the Nitrate level and fault diagnostic information.

9.7.8.6 The following spares shall be supplied and shall be suitably packaged for long term storage in a coastal environment:

9.7.8.7 Wiper blades of a quantity that will supply maintenance requirements for the period of two years.

In-line Sampling Analyser

9.7.8.8 The Nitrate analyser shall use a light absorption method and shall include compensation for sample turbidity and ageing of the photometer detector light source.
9.7.8.9 The Nitrate analyser shall incorporate temperature control of the processed sample into the measurement photometer chamber.

9.7.8.10 Calibration shall be a configurable automatic function, including flushing sequence, of the analyser.

9.7.8.11 ‘Smart’ communications to the transmitter shall allow remote interrogation, diagnostics and reconfiguration.

9.7.9 Ammonia

9.7.9.1 Ammonia analysers shall utilise colorimetric detection and shall incorporate temperature control of the measuring cells.

9.7.9.2 Calibration and cleaning shall be configurable automatic functions of the analyser. Manually initiated grab sample and analysis shall be included as a standard function.

9.7.9.3 ‘Smart’ communications to the transmitter shall allow remote interrogation, diagnostics and reconfiguration.

9.8. Proximity Sensors

9.8.1 Proximity sensors shall be 3 wire PNP inductive devices. Proximity sensors shall withstand reverse polarity connections and shall incorporate short circuit protection.

9.9. Recommended Spares

9.9.1 Vendor shall provide the list of recommended spares required for commissioning and two years operation.

10. Motor Starters

10.1. General

10.1.1 Motor starters shall have been tested by a recognised testing authority for compliance with AS/NZS IEC 60947.4.1. If this testing was not carried out within Australia, then a Certificate of Approval shall be provided from an approved Australian Electrical Distribution Authority.

10.1.2 Motor starters shall have the following classification characteristics in accordance with AS/NZS IEC 60947.4.1:

<table>
<thead>
<tr>
<th>Contactor Characteristics</th>
<th>Required Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>415 V AC</td>
</tr>
<tr>
<td>Rated Continuous Current</td>
<td>Rating shown of design drawing or in Schedule of Technical Requirements</td>
</tr>
<tr>
<td>No. of Poles</td>
<td>3</td>
</tr>
<tr>
<td>No. of Phases</td>
<td>3</td>
</tr>
<tr>
<td>Interrupting Medium</td>
<td>Air</td>
</tr>
</tbody>
</table>
10.1.3 Contactors shall be of the block type with modular design suitable for vertical mounting.

10.1.4 Mounting screws shall be accessible from the front.

10.1.5 Contactors for use with equipment over 37kW shall have replaceable contacts and removable arc chutes.

10.1.6 The coil shall be easily removable and magnet surfaces accessible for inspection and cleaning.

10.2. **Electronic Motor Protection Relays**

10.2.1 All electronic motor protection relays shall monitor both voltage and current.

10.2.2 All DOL motors shall be protected by electronic motor protection relays incorporating at least the following features:

- Overcurrent protection;
- Overvoltage/undervoltage protection
- Simulated motor thermal image based on phase currents;
- Integral thermistor protection;
- Phase failure and asymmetry protection;
- Individual heating and cooling time constants for the motor thermal image;
- Single phasing protection;
- Ground fault protection;
- Stall protection;
- Incorrect phase sequence protection and adjustable underload protection.
10.2.3 An Operator Interface Panel (OIP) shall be provided and installed on the door of the motor starter.

10.2.4 All electronic motor protection relays shall be able to provide at least the following on the OIP and through SCADA:

- Energy consumed (kWh)
- Power (kW)
- Motor Current
- Drive Status, (Run, Stop, Fault)
- Cause of a trip

10.2.5 The relay shall be complete with appropriate data communications functionality dependent upon site PLC Architecture used.

10.3. **Soft Starters**

10.3.1 Electronic Soft starters shall be selected from the Mandated Equipment List (A). Only one (1) motor shall be driven from any electronic soft starter.

10.3.2 The starter shall be capable of starting the motor six (6) times per hour for motors rated greater than 50 kW and a minimum of twelve (12) equally time spaced starts per hour for motors rated at 50 kW or less.

10.3.3 Controlled deceleration of the motor during stopping shall be incorporated where required.

10.3.4 Soft Starters shall be supplied with internal bypass contactors and rated for severe duty.

10.3.5 Soft Starters shall be supplied with 24 V DC control voltage.

10.3.6 Terminals shall be provided on the MCC cell for the connection of motor thermistors.

10.3.7 Soft starters shall be supplied with a LCD display/keypad capable of being mounted remote from the starter.

10.3.8 The LCD display panel shall be mounted remote from the unit. The remote panel shall protrude though the cell door of the MCC or switchboard to allow direct operator access.

10.3.9 All communication cables shall be shielded.

10.4. **Variable Speed Drive Starters**

10.4.1 The Variable Speed Drive (VSD) shall be a variable frequency, variable voltage inverter specifically designed to operate a standard 415 VAC squirrel cage motor with input supply of 415 VAC with variations of ±6% voltage, +5% frequency, and 3% voltage imbalance between phases.

10.4.2 The drive installed rating shall be on the basis of the motor nameplate full load current with a suitable de-rating for ambient temperature, enclosure, ventilation, with due regard to the characteristics of the driven equipment. The installed rating of the equipment shall be a minimum of 110% of Maximum Continuous Rated, and be
entirely suitable for repeated overloads of 120% for 60 seconds and 150% for 6 seconds at not more than 6 repetitions per hour.

10.4.3 The VSD shall have a sinusoidal Pulse Width Modulation (PWM) output, using Insulated Gate Bipolar Transistor (IGBT) technology in the power output module. The basic switching frequency shall be adjustable and shall be set to the minimum value necessary to achieve the desired performance parameters.

10.4.4 Output reactors shall be provided where required by the manufacturer, however design should limit the number of reactors required based on Switchboard or MCC being in close proximity of connected load.

10.4.5 The control module shall feature digital technology, programmable from a keypad, with a digital display showing the drive parameters in clear English, values in engineering units, password protection to minimise unauthorised changes to drive parameters, and internal backup of drive parameters. The keypad and digital display shall be accessible from the front operating face of the switchboard of VSD.

10.4.6 VSD's supplied from a switchboard or motor control centre shall have upstream protection devices installed, as per the VSD manufacturer’s recommendations and the requirements of AS/NZS 3000 especially in regards to earth leakage.

10.4.7 The construction and layout of the switchboard or motor control centre shall allow for the segregation needed for input and output power and control cables to limit Electro-magnetic Interference (EMI).

10.4.8 Chokes shall only be installed where required.

10.5. Variable Speed Drive External to MCC

10.5.1 All VSD’s shall be rated to IP54, where mounted on the wall of the switchroom and contain integral RFI Filters. Motor and Thermistor cables shall be connected direct to the wall mounted VSD’s.

10.5.2 VSDs that are mounted external to a MCC are to be mounted neatly on a wall and placed such that the physical size of the drive decreases along the wall. Where VSDs are too large to mount on the wall, floor mounted, dead front enclosures shall be used. Floor-mounted VSD enclosures shall be in accordance with the switchboard enclosure section of this Specification.

10.5.3 Where a choke is required for a VSD then it shall generally be mounted as close to the VSD as possible and in compliance with manufacturer recommendations.

10.5.4 Where Unistrut or the like is used to mount VSD to the wall then the Unistrut shall be on continuous bars for all drives and not multiple short sections for individual drives. Variable Speed drives shall be mounted on at least 2 horizontal rails or a suitable backplane.

10.6. Variable Speed Drive - Performance

10.6.1 The output waveform of the VSD shall be such that motor derating of a standard AC induction motor is not required. The VSD shall be capable of starting into a rotating motor, without tripping.

10.6.2 The VSD shall be provided with adjustable starting torque for hard to start loads, and a selection of basic V/Hz relationships to ensure optimum operation of the motor and VSD combination.
10.7. Variable Speed Drive - Control

10.7.1 The VSD shall be provided with at least the following inputs:

- Analogue speed control, 4-20 mA;
- Digital input for run;
- Digital input for auto/manual;
- Digital input, programmable for user defined functions.

10.7.2 The VSD shall be provided with at least the following outputs:

- Fault relay;
- Analogue motor speed, 4-20 mA;
- Auxiliary relay, programmable for user defined functions.

10.7.3 The VSD shall be supplied with appropriate communications card for integration with SCADA and for particular use in speed control and monitoring.

10.8. Variable Speed Drive - Indication

10.10.1 The following drive parameters shall be available at the digital display without the use of passwords:

- Output Frequency (Hz);
- Motor Current (A);
- Reference Frequency (Hz);
- Drive status (Run, Stop, Fault);
- Cause of a trip (e.g., Overcurrent, Overvoltage, and Over temperature, etc.);
- Pre-trip drive parameters recalled from the VSD fault memory log;
- Variable Speed Drive Starters

10.9. Variable Speed Drive – Integral Protection

10.9.1 The variable frequency inverter shall be provided with integral protection for:

- Overvoltage;
- Under voltage;
- Over temperature;
- Short circuit;
- Earth fault;
- Inverter overload;
- DC Bus Voltage Failure.

10.9.2 The integral motor protection shall provide a two body thermal model with user adjustable heating and cooling time constants, with indication and trip for the following:
• Thermal overload;
• Timed Overcurrent;
• Timed Under current;
• Stall;
• Earth fault;
• Phase imbalance;
• Motor thermistor temperature; and
• Bearing temperature.

10.9.3 The unit shall prevent a hot restart if the start would result in a trip before the end of the acceleration time.

10.9.4 The unit shall maintain an accessible history log of starts and start times. It shall provide adjustable pre-trip warnings for:
• Thermal overload;
• Phase asymmetry;
• Overcurrent;
• Earth fault; and
• Undercurrent pick-up.

10.10. Variable Speed Drive - Harmonics

10.10.1 7.16.1 The VSD, when operating at any load, shall comply with AS/NZS 61000.3.6.

10.10.2 Harmonics and EMC

10.10.2.1 The VSD shall not impress generated voltage and current harmonics into the supply system greater than those allowed by the local supply authority. The latest Energex Supply & Planning Manual shall be referred to for acceptable limits and the contractor shall aim to comply with the minimum standards required.

10.10.2.2 Where the VSD voltage harmonics exceed those specified either in applicable Standards or Supply Authority requirements, additional mitigation of harmonics shall be undertaken via external circuit modifications and/or the installation of additional equipment.

10.10.2.3 The Contractor shall supply, prior to installation work commencing, details of the cabling, earthing and filtering arrangements proposed in order to meet current applicable standards.

10.11. Variable Speed Drive – Power Factor

10.10.1 The power factor of the VSD shall be greater than 0.9 for all normal running loads from 70 % speed to 100% speed. The VARs required at low load running shall not exceed the VAR requirement at 70% speed.
10.12. Variable Speed Drive – Electromagnetic Disturbance
10.12.1 The VSD shall be provided with filters to ensure that the installation as a whole complies with AS/NZS CISPR11, Group 1, Class A.
10.12.2 The installation and earthing of the converter components, enclosures, motor cabling, and the motor shall be done to ensure compliance.
10.12.3 Type test compliance documentation for the offered equipment shall be submitted by the Contractor. The design and installation shall incorporate all of the features present in the successful type test.

10.13. Variable Speed Drive - Chokes
10.13.1 Load side chokes shall be provided and installed where cable lengths are deemed too long as recommended by the manufacturer.

10.14. Variable Speed Drive – Circuit Protection
10.14.1 Provide comprehensive fault current protection for the power and control electronic systems integral within the drive cubicle.
10.14.2 Any required semiconductor fuses shall be provided with signalling and alarm features to allow identification of the operated fuse element.
10.14.3 Inter-tripping to the circuit breaker shall be included where required.
10.14.4 Earth Leakage protection may be required for personnel safety as determined by AS/NZS 3000.

10.15. Variable Speed Drive - Features
10.15.1 The VSD shall feature:
 • Independently adjustable maximum and minimum speed;
 • At least two jump frequencies;
 • Automatic restart after momentary power failure;
 • Torque limiting feature to prevent tripping due to transient overcurrent;
 • Slip compensation;
 • Adjustable acceleration and deceleration times with settings up to 1200 s;
 • Automatic reset of selected fault conditions;
 • All drive parameters to be stored in non-volatile memory;
 • Drive parameters to be uploaded and downloaded via integral communications port. Provide software and cable. Software shall be installed on the Engineering Workstation by the Principal;
 • Comprehensive drive diagnostics and multilevel fault finding.
11. Motors

11.1. Electrical Requirements

11.1.1 Design
11.1.1.1 Electric motors shall be of the totally enclosed fan cooled type, fitted with ball or roller bearings designed for a nominal life corresponding to 40,000 hours when calculated in accordance with AS/NZS 2729 at full load operation when the motor is direct coupled to the driven machine.

11.1.1.2 For submerged motors a 660 V motor cable suitable for use under water shall be supplied and connected to the motor by means of a watertight joint. The cable shall be solid where it passes through a gland and be encapsulated in an appropriate sealant. The other end of the cable shall be terminated into the associated LCS. All submerged motors shall incorporate suitable integral seal failure functionality, unless otherwise approved by the Superintendent.

11.1.2 Performance
11.1.2.1 The motors shall be manufactured in accordance with AS60034 series.

11.1.2.2 Unless otherwise approved, the maximum continuous rated shaft output of the motor shall be at least 10% greater than the design duty-point or equal to the most severe operating-point power of the driven machine whichever is greater.

11.1.2.3 The motor shall comply with the requirements of AS 60034.9 and AS 1359.114 and the Standard Specification for Mechanical Installation (Pr9693) with respect to noise and vibration.

11.1.3 Voltage and Frequency
11.1.3.1 All motors shall be designed for a 50 Hz grounded neutral power supply system.

11.1.3.2 Unless otherwise required motors shall be squirrel cage induction motors designed for 415 VAC, 3 phase power supply.

11.1.4 Duty and Starting
11.1.4.1 In general, all motors greater than 0.2 kW shall be 4 pole configuration and shall operate on a 400 VAC, 3 phase, 50 Hz supply.

11.1.4.2 Motors shall be capable of operating continuously at any frequency between 48 Hz and 52 Hz at a voltage which may vary within +/-10% of the nominal value.

11.1.4.3 Smaller rated motors may, with the approval of Unitywater Electrical Engineering personnel, be single phase suitable for single phase power operation.

11.1.4.4 The motor shall be suitable for up to at least fifteen (15) starts per hour or more frequent as applicable to the specific operational requirements of the motor, except where it can be demonstrated that such a frequency of operation is unwarranted or impractical for the motor in question and approval from Unitywater Electrical Engineering personnel is provided.

11.1.4.5 All motors shall be Maximum Continuous Rated and shall be sized with a nameplate rating of 110% of the demand power of the driven equipment.
11.1.4.6 Standard motors shall conform to Design N as defined AS60034.12.

11.1.4.7 Motors to be subjected to high striction torques, high inertia loads or other special loads shall be entirely suitable for the duty, and the motor vendor shall guarantee the motors suitability for these conditions.

11.1.4.8 Unless otherwise specified motors shall be capable of two starts in quick succession with the motor at normal operating temperature.

11.1.4.9 Unless otherwise specified and approved by Unitywater, all motors shall be suitable for automatic restart at 80% of rated voltage.

11.1.4.10 The safe stall time from hot and cold must be specified by the supplier.

11.1.4.11 Motors for use on VSD shall comply with AS 60034.17 and be sized and guaranteed fit for the purpose including continuous operation at low speeds.

11.1.5 Enclosures

11.1.5.1 All motors for general use shall be cast iron or fabricated steel frame and end plates, Totally Enclosed, Fan Cooled (TEFC) and weatherproof.

11.1.5.2 Electric motors shall have an enclosure designation of at least IP 56 (for non-submerged applications) and IP68 (for submerged applications). Electric motors intended to be fully submersed shall have a protection of IP68.

11.1.5.3 Independent IP type certificates shall be made available upon request.

11.1.5.4 All electrical motors to be used outdoors in open areas shall be specially weatherproofed and suitable for use in a high humidity, with fungicidal treatment to the stator winding. All gaskets shall be one piece. Motor output ratings shall be the Australian/British preferred values as per AS 1359.30.

11.1.5.5 Dimensions shall be in accordance with AS60034 for motors having outputs within the range of that Standard.

11.1.5.6 Motors that will be installed vertically with the fan at the upper end shall have a stainless steel rain shield fitted over the fan end of the motor. The fan cowl shall be 316 stainless steel and all fixings shall be 316 stainless steel.

11.1.5.7 TEFC Motors located outside in a wet or dusty environment should be fitted with Dust shields.

11.1.5.8 The enclosures provided shall have sufficient internal bracing so as to withstand the wind forces expected on site.

11.1.5.9 Drawings of the proposed enclosures shall be provided to Unitywater for approval before manufacture.

11.1.5.10 Dosing pump enclosures shall completely prevent exposure to the weather without derating the drive due to heat.

11.1.6 Insulation – General Use Motors

11.1.6.1 Terminal boxes shall be centre-mounted and shall be capable of rotation through four times 90° to allow cable entry from different directions. Terminal boxes shall be oriented for bottom entry and shall use stainless steel fixings.

11.1.6.2 An earthing terminal shall be provided in the terminal box of 415 VAC motors. The earth terminal shall be sized to continuously carry motor full load current.
11.1.6.3 All terminal boxes shall be protected to IP56.

11.1.6.4 Main terminal boxes shall be designed for air termination of copper conductors. All motors 5.5 kW and above shall have six ends out to the terminal box.

11.1.6.5 Motors shall have separate IP56 terminal boxes for space heaters, thermistors, RTD’s and other accessories.

11.1.6.6 Main terminals shall be marked in accordance with AS60034.8.

11.1.6.7 Captive screws shall be fitted on all terminal box lids.

11.1.7 Insulation – Submersible Motors

11.1.7.1 Provide 660 V submersible power cable and thermistor cable to the required length to reach the terminators in the switchboard. Provide an encapsulated connection at the motor utilising a cable gland and sealant.

11.1.8 Winding Protection/Thermistors

11.1.8.1 Motors 11 kW (132 frame size) and above shall be installed with thermistor protection. Thermistors shall be of the PTC resistor type connected in series, one per phase, integral with the stator windings and clearly marked in the terminal box. The terminals shall be wired to a separate terminal box labelled ‘THERMISTORS’. The location of winding thermistors shall be at the hottest point in the stator winding for that machine.

11.1.8.2 Motors 355 frame and above, shall be furnished with six RTDs (PT100) embedded prior to impregnation in the stator winding at equal intervals around the periphery.

11.1.8.3 The winding RTDs shall be wired to a separate terminal box labelled ‘Winding Temperature’. The RTD leads shall be terminated to RTD to 4-20 mA converters. The converters shall be of the two-wire self-powered type.

11.1.8.4 The bearing temperature RTD shall be terminated in suitable housings that will accommodate the RTD to 4-20 mA converters. The RTDs shall be terminated to the converters.

11.1.8.5 The manufacturer should provide recommended alarm and trip temperatures for RTDs.

11.1.8.6 The thermistors, their fittings in the motor, reference temperature and testing of the motor shall be in accordance with AS/NZS IEC 60947. All instruments shall be suitable for continuous unattended operation and shall maintain their rated accuracy with a minimum of maintenance or need for adjustment and re-calibration.

11.1.9 Anti-Condensation Heaters

11.1.9.1 Motors above 55 kW (225 frame size) shall have single phase powered space heaters, sized to raise winding temperature to 3 °C above ambient. These heaters shall be attached to the motor end winding prior to impregnation to ensure good thermal contact with the winding.

11.1.9.2 Leads for space heaters shall be brought out to a separate terminal box. Heater terminal boxes shall be labelled ‘DANGER - LV HEATERS’.

11.1.9.3 The anti-condensation heater voltage and wattage shall be included on the motor rating plate or a separate stainless steel plate.
11.1.9.4 Motor heaters shall be provided to all motors that can be idle for extended periods (standby equipment) with Maximum Continuous Rating greater than 11 kW. Heaters shall be suitable for connection to a single phase supply.

11.1.10 Efficiencies
11.1.10.1 All motors shall be high efficiency type in accordance with AS/NZS1359.5 Tables A3 or B3.
11.1.10.2 All fans on motors 132 frame and larger shall be fabricated steel or cast/ductile iron.
11.1.10.3 For TEFC motors, the direction of airflow shall be from the outboard end to the coupling end.
11.1.10.4 Motors shall only have uni-directional fans where required to meet specified noise criteria.

11.1.11 Bearings
11.1.11.1 Bearings shall be in accordance with the manufacturer’s standard for various sizes of motors. Rolling element bearings shall be used. Sleeve bearings may be offered if no suitable alternative exists.
11.1.11.2 Ball or roller bearings in all motors frame size 132 and larger shall be provided with grease nipples and relief valves to automatically eject old grease from the bearing housings. All systems (grease valve) should have ability to be purged whilst running. Greasing systems should also force new grease into the back of the bearing whilst exhausting old grease to atmosphere to ensure that the maximum amount of old grease is expelled.
11.1.11.3 Grease purging shall incorporate V-ring seal to prevent ingress of moisture into the bearing. The removal of an exhaust plate/plug when regreasing is NOT acceptable.
11.1.11.4 All bearings fitted with a grease relief system shall be fitted with studs for condition monitoring.
11.1.11.5 All rolling element bearings shall have metallic cages. Plastic cage bearings are not acceptable.
11.1.11.6 Ball or roller bearings shall have an L10 rated life of at least 50,000 hours for radial loaded applications and 100,000 hours for direct-coupled applications.
11.1.11.7 Bearing shall be of standard types, enabling replacements to be readily available from recognised bearing manufacturers. Bearings of SKF, NSK or FAG must be provided.
11.1.11.8 Dummy bearings should be fitted for the transport of sleeve bearing motors.
11.1.11.9 Shaft voltages shall be measured and included on the routine test on all motors 355 Frame and above. Insulated bearings shall be fitted to both ends of motors with shaft voltages exceeding 250 mV.
11.1.11.10 Shaft end float shall be stated for all motors 250 Frame size or larger to enable a check to be made on the end float of the coupling to be supplied with the driven equipment.
11.1.11.11 Where sleeve bearings are used, the Magnetic centre should be marked on the motor as well as the limits of end float.
11.1.12 Motors 200 Frame size and larger, or where supplied from a VSD shall be fitted with insulated non-drive end bearings.

11.1.12 Shaft
11.1.12.1 The motor shafts shall be fitted with neatly fitting shaft keys. An anti-seize type grease coating shall be applied to the shaft before the coupling, pulley or any other power transmitting device is fitted to the shaft.

11.1.13 Direction of Rotation
11.1.13.1 Direction of rotation shall be as specified or as required by the manufacture of the driven equipment.

11.1.13.2 Three phase LV motors shall be bi-directional unless otherwise approved. Efficiencies and performance data supplied shall be for bi-directional rotation where applicable. Uni-directional motors shall have the direction of rotation clearly marked.

11.1.13.3 Any change in direction required after installation shall be undertaken directly at the motor terminal box or at the load side of the LCS for submersible pumps.

11.1.14 Noise
11.1.14.1 The noise level of motors shall not exceed 70 dB(A) (No Positive Tolerance) Mean Sound Pressure level at 1 m at no load without prior agreement

11.1.15 Vibration
11.1.15.1 Balance should be undertaken with a half-key and rotors should be balanced to G2.5 or better.

11.1.16 Painting
11.1.16.1 All motors shall be primed and painted with 2 pack epoxy paint suitable for the environment.

11.1.16.2 The manufacturer’s standard epoxy painting system may be acceptable if it provides protection against a marine environment and is approved by Unitywater Engineering Personnel.

11.1.16.3 The finish colour shall be Orange X15 to AS 2700. Motors may be provided in the manufacturer’s preferred finish colour where approved by Unitywater.

11.1.17 Rotor Construction
11.1.17.1 The rotor construction shall be a minimum of pressure cast rotor bars that are integrally cast to the end rings and cooling fans.

11.1.18 Name Plate
11.1.18.1 Each motor shall be fitted with stainless steel nameplate containing the following information.

11.1.18.2 The information to be displayed on the name plate shall be in accordance with stated requirements of AS/NZS 1359 and other applicable standards.

11.1.18.3 The name plate shall also state the mass of the motor in kg.
11.1.19 Hazardous Area Motors

11.1.19.1 Motors installed in Hazardous Areas shall be manufactured in accordance with AS/NZS 60079. Certification shall be provided with the motors.

11.1.19.2 All Hazardous Area motors shall be supplied with thermistors.

11.1.19.3 Motors using the Ex e protection technique shall be have its t_E time and I_a/I_N ratio clearly marked on the nameplate. Ex e motors supplied from VSDs shall be type tested and certified in accordance with AS/NZS 60079

12. Field Equipment

12.1. General

12.1.1 Unless specified elsewhere, all electrical field equipment shall be housed in 3 mm marine grade aluminium or 1.6 mm 316 stainless steel enclosures with a minimum protection rating of IP56 for all areas.

12.1.2 Enclosures shall be mounted to give easy access for maintenance purposes. The enclosure shall not obstruct walkways or restrict access for maintenance purposes to other items of plant. No enclosure shall be mounted on items which may need replacing or repairing due to normal wear.

12.1.3 Cable termination facilities shall be arranged to permit cable entry into the bottom of the enclosure only.

12.1.4 Spare cable entries shall be sealed with screwed plugs with applicable rating for the device.

12.1.5 All fixings shall be 316 stainless steel. Self tapped fixings shall not be used.

12.1.6 All fasteners shall be captive to the enclosure body or lid.

12.1.7 Plastic components, e.g. pushbuttons, lights and switches, shall not be exposed to direct sunlight unless suitably rated. Any enclosures housing equipment with LCD displays shall be positioned in a north/south aspect to avoid direct sunlight.

12.1.8 All underground flow meters shall be installed within a suitably sized pit. Pits shall also be provided with adequate drainage to the plant or a sump pump.

12.1.9 Local control shall be limited to proprietary equipment with local control minimised and all control fully configured in the plant control system.

12.2. Mounting of Instruments and Enclosure

12.2.1 Mounting methods shall at all times be suitable for the mass and duty of the device and the environment into which it is to be mounted.

12.2.2 Sunshades shall be provided for all field instruments to protect against mechanical damage, solar heating and UV damage where exposed to these conditions in the installed position. Sunshades shall have a forward sloping roof.

12.2.3 Where instruments use transmitters that are separate from the sensor, and the transmitters are not housed in enclosures, the transmitter shall be mounted on a stainless steel bracket with a sunshade for protection against mechanical damage, solar heating and UV damage.
12.2.4 Indicators and transmitters with integral displays shall be mounted to avoid exposure of the LCDs and membrane keypads to direct sunlight. The preferred orientation of the displays and indicators is facing south or east.

12.2.5 Displays and indicators shall be mounted at a height of between 500 mm and 1600 mm above the surrounding ground level.

12.2.6 Instruments and enclosures shall be mounted in such a way to maintain the IP rating of the instrument/enclosure.

12.3. Local Control Stations

12.3.1 The term Local Control Station (LCS) shall be taken to include all associated works including mounts/foundations, base, stands, sunhoods, equipment and enclosures.

12.3.2 LCS shall be designed to meet operational requirements.

12.3.3 In general LCS will be installed for the operation of a certain piece of equipment or process.

12.3.4 LCS shall have isolators, push buttons and selector switches as required for each individual drive.

12.3.5 LCS shall be constructed of 3 mm marine grade aluminium or 1.6 mm grade 316 stainless steel with sunhood and supported on a marine grade aluminium channel post and base with cover plates.

12.3.6 The LCS equipment enclosure shall preferably be proprietary units, and shall have the following mounted behind a locked door on an escutcheon:

- Start pushbutton;
- Stop pushbutton;
- Local/Off/Remote selector switch;
- Load breaking local Isolator;
- Forward/off/reverse (if applicable).

12.3.7 A local latching stop button shall be accessible without the need for a key.

12.3.8 The LCS shall be sufficiently deep for at least two contact blocks to be used per operator.

12.3.9 A terminal strip for all control wiring and a safety strap, to support open front cover if not supported by hinges, shall also be provided.

12.3.10 LCS shall not be used for the looping or marshalling of cables.

12.3.11 The load breaking local isolating switch shall have an AC23 rating for the motor being isolated and shall be lockable in the off position and be fitted with an auxiliary interlock which shall be wired into the motor control circuit.

12.3.12 The internal control wiring shall be terminated on rail-mounted terminals and be ferruled appropriately.

12.3.13 Live parts shall be shrouded to IP20 to protect against accidental contact when the escutcheon cover of the LCS has been opened.
12.4. **Junction Boxes**

12.4.1 Junction boxes shall be used for the marshalling and looping of all field cabling and housing of field surge protection devices.

12.4.2 Junction boxes shall be constructed from a minimum of 3 mm marine grade aluminium, 1.6 mm Grade 316 stainless steel with a minimum protection rating of IP56. Polycarbonate, UV resistant enclosures may be considered for small junction boxes only where vendor cables are provided to final field equipment.

12.4.3 All fasteners shall be stainless steel and captive to the lid.

12.4.4 Junction boxes shall be mounted to give easy access for maintenance purposes.

12.4.5 Junction boxes shall be mounted in such a way to maintain the IP rating of the junction box. Self tapping screws are not acceptable.

12.4.6 The junction box shall not restrict access for maintenance purposes to other items of equipment.

12.4.7 No junction box shall be mounted on items which may need replacing or repairing due to normal wear.

12.4.8 Junction boxes shall be of ample size to enable the cables to be neatly diverted from one conduit to another without undue cramping.

12.4.9 Junctions shall be effected through terminal strips within the junction box.

12.4.10 Separate junction boxes shall be provided for each different drive or equipment system and for sections of different systems which are not able to be isolated at one location.

12.4.11 Junction boxes shall be located in accessible locations and either fixed to the building structure or stanchion at a height of between 1100 mm and 1300 mm.

13. **Light and Power**

13.1. **General**

13.1.1 All designs shall give due consideration to light and power distribution. Design lighting levels are defined in section 13.6.2.

13.1.2 General purpose outlets shall be installed in logical and accessible locations.

13.1.3 Lighting design shall take into consideration location of lights and be designed to ensure ease of maintenance.

13.2. **Lights - General**

13.2.1 Lighting shall be supplied and installed in locations to ensure that adequate lighting levels are maintained for operational and maintenance tasks to be performed.

13.2.2 Lighting calculations for all areas shall be provided so the required quantities, ratings and optimum layouts of luminaries may be established.

13.2.3 All luminaries shall be high energy efficiency types.

13.2.4 All external light fittings shall provide as a minimum the following:
• All light fittings shall be constructed to IP65 degree of protection;
• Where fittings are subject to vibration suitable anti-vibration mounts shall be supplied and installed;
• Power factor correction capacitors shall be of a value to correct to >0.9;
• Lamp holders shall be suitable for bi-pin lamp caps with a rotary twist lock pin contact;
• Internal wiring shall be run neatly, without stress, securely fixed and so placed that contact with ballast units is avoided;
• A terminal connector block shall be fixed adjacent to the cable entry hole for the connection and looping of fixed wiring. The terminal block shall be capable of accepting a minimum of 3 conductors of suitable wiring size;
• An earth terminal with anti-spread facilities shall be provided adjacent to the connector block and shall be an effective electrical contact with the metallic body of the fitting and auxiliaries and any other metal parts;
• Light fittings shall be manufactured in accordance with the requirements of AS 60598.1;
• Separate low loss ballasts shall be provided for each tube and they shall be manufactured to AS 61347.

13.2.5 Nuts and screws shall be fitted with Starlock or similar approved type washers.
13.2.6 All fastening devices shall be positively held so they may be undone and remade without access to the back of the fitting.
13.2.7 Internal wiring shall be PVC V105 24/.5 flexible conductors with crimped termination lamp holder and starter sockets contacts.
13.2.8 All fittings shall be supplied complete with all necessary mounting brackets, accessories and lamps.

13.3. **External Plant Area Lighting**

13.3.1 General plant area lighting shall be provided via lighting columns.
13.3.2 Suitable external lighting shall be provided around the plant access routes, with additional local lighting to specific areas.
13.3.3 These lights are to have SCADA control and in specific instances a local switch point. Lights within buildings shall always have a local switch point.
13.3.4 Lights shall be mounted and supplied with brackets that ease maintenance requirements, in particular, tilt poles shall be provided where reasonably practicable.
13.3.5 All exterior lighting shall have a minimum rating of IP65 and be corrosion resistant.

13.4. **Lighting Control**

13.4.1 The lighting control shall allow the lights to be activated at dusk for an adjustable period and re-activated for an adjustable period before dawn to allow personnel access and egress around the site. Further control will be outlined in the site lighting control philosophy.
13.4.2 Security lighting shall be switched by an external photocell working in conjunction with and controlled by the Plant control system. A lighting control philosophy for each plant shall be developed as part of each project and will be dependent upon the site. Exterior area/walkway lighting shall be controlled via the plant PLC and relay/contactor control.

13.4.3 Each area lighting circuit shall be capable of manual operation via the plant Control System with manual over-ride via a selector switch at the lighting distribution board.

13.4.4 Relays, contactors and other control gear associated with lighting circuits shall be housed within the respective light and power distribution board or MCC.

13.5. **Interior Lighting**

13.5.1 All fittings shall be located in positions that are easily accessible by means normally available to maintenance staff.

13.5.2 Luminaires in clean, dry indoor locations shall be of the enclosed type, as a minimum a diffuser is required. All fittings in other locations shall be IP65 and corrosion resistant.

13.5.3 Lighting shall be controlled by splash-proof switches located at each entrance to the area being controlled, with multi-way switching where more than one entrance is provided.

13.6. **Luminance Levels**

13.6.1 Maintained luminance values shall be based on cleaning intervals of 24 months for luminaries and building surfaces.

13.6.2 The average luminance levels are outlined in Table 5 - Luminance Levels below.

<table>
<thead>
<tr>
<th>Equipment Area</th>
<th>Average Luminance Requirement (lx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchroom</td>
<td>240</td>
</tr>
<tr>
<td>Control Room</td>
<td>400 (at bench height)</td>
</tr>
<tr>
<td>Laboratory</td>
<td>400 (at bench height)</td>
</tr>
<tr>
<td>Internal Access ways</td>
<td>160</td>
</tr>
<tr>
<td>Fixed electrical and mechanical Plant</td>
<td>80</td>
</tr>
<tr>
<td>External Access/Egress Plant Area Lighting</td>
<td>40</td>
</tr>
<tr>
<td>External Security/Street lighting</td>
<td>10</td>
</tr>
</tbody>
</table>

13.6.3 Control room lighting shall comply with requirements for screen based equipment.
13.6.4 The spacings of the light fittings shall be in accordance with AS 2293.1 and AS 2293.3.

13.6.5 Testing shall be carried out to ensure the stated illumination levels are reached.

13.7. Emergency Lights

13.7.1 Emergency lighting shall meet the requirements of AS 2293.

13.7.2 Emergency exit lights (luminaries) shall provide evacuation or escape lighting to a level of not less than 0.2 lx along the escape route for a period of three hours.

13.7.3 Emergency exit lights shall be LED type.

13.8. Power

13.8.1 General Purpose Outlets

13.8.1.1 General purpose outlets installed outdoors shall be 15 A switched outlets, RCD protected, hose-proof and weatherproof to IP56 degree of protection, high impact polycarbonate.

13.8.1.2 The outlets shall be installed in convenient locations as developed during the design and shall be mounted on nearby structures or buildings where possible.

13.8.1.3 General purpose outlets installed indoors shall be 10 A double switched outlets, RCD protected unless otherwise required by this specification or the project requirements.

13.8.1.4 General purpose outlets supplied by UPS shall be coloured red.

13.8.1.5 General purpose outlets installed within buildings shall be installed in convenient locations and shall be approved by Unitywater.

14. Uninterruptible Power Supply (UPS)

14.1. General

14.1.1 At least one Uninterruptible Power Supply (UPS) system shall be provided. The location will be dependent upon site requirements but usually will be installed in the main switchroom.

14.1.2 The UPS shall generally provide power for:

- Operator display client;
- Engineering Workstation;
- PLC equipment;
- Instrumentation;
- Laboratory equipment.

14.1.3 The UPS shall have a minimum of two hours back up time at the standing load.

14.1.4 UPS power shall be distributed via a separate distribution board.

14.1.5 The distribution board buses shall be protected with a bi-directional surge diversion device rated at 10kA (8/20µs) via a suitably rated protective device.
14.1.6 This surge unit is to give protection to load circuits should the UPS supply not be available and also protect against surges entering via the field load circuits.

14.2. **UPS System**

14.2.1 **General**

14.2.1.1 The UPS shall comprise the following components:

- Rectifier/Battery charger;
- Inverter;
- Control and Indication;
- Static bypass;
- Internal maintenance bypass;
- Bypass line conditioner (where required);
- Sealed Battery set;
- Battery stand/enclosure;
- Battery circuit breaker;
- External bypass switch (Maintenance bypass switch);
- Test load circuit breaker (where required);
- Test load (where required); and
- Battery maintenance tools.

14.2.1.2 The UPS shall be capable of the following modes of operations:

- Normal mode;
- Emergency Mode;
- Bypass Mode; and
- Down-graded Mode.

14.2.2 **Parallel Operation**

14.2.2.1 The UPS shall be capable of parallel operation with an identical unit in synchronised load sharing mode. Where one UPS fails, the entire operating load shall be automatically shifted to the other UPS without interruption.

14.2.2.2 Full functionality and 100 % rating as per the project requirements shall be provided by each UPS in the parallel system such that one UPS can be removed from service with no downgrade in system functionality or backup time.

14.2.2.3 In normal operation, the output of each inverter shall synchronize to the bypass AC line. The failure of one UPS shall automatically cause the remaining inverter to assume the full load without power interruption. In the event of a failure or unavailability of the second inverter, the load shall be automatically and instantaneously transferred to the bypass AC line without power interruption to the load.
14.2.2.4 Circuit breakers or load disconnect switches shall be provided at the output of each UPS module for the purpose of isolating one or both UPS units from the load bus. Both UPS shall supply a common output bus.

14.2.2.5 Each UPS in a parallel load sharing system shall be installed in its own separate enclosure. If one unit is taken out of service for any reason, it shall be possible to manually place it back in service and reconnect it to the load bus without any disturbance to the other UPS or the load.

14.2.2.6 The Maintenance bypass switch shall be common to both UPS sets.

14.2.3 System Rating

14.2.3.1 On loss of mains power each UPS shall be capable of continuously maintaining the rated standing load for a minimum of two hours whilst maintaining the voltage level within the specified limits with the batteries initially fully charged. The stated rating is inclusive of load factors.

14.2.3.2 The overall UPS efficiency shall be greater than 95% with the batteries charging at the maximum rate and the UPS supplying full load.

14.2.4 Supply System

14.2.4.1 Under normal conditions the rectifier shall supply the power requirements of the inverter (fully loaded) and float charge the battery.

14.2.4.2 On restoration of the normal supply, charging of the battery shall be initiated, and the rectifier shall supply the inverter (fully loaded) and, simultaneously, charge the battery.

14.2.4.3 If supply to the load from the inverter fails, the static bypass switch shall transfer the load to the bypass supply. Transfer back to the inverter output shall be selectable as either automatic or manual. Provision shall be made for manually transferring the load to the internal static bypass or external maintenance bypass supply.

14.2.5 Environment

14.2.5.1 The UPS shall be housed in an air conditioned switchroom or other air conditioned building. The associated batteries will be housed in the same location.

14.2.5.2 The equipment shall be designed to operate at the maximum ambient temperature shown in the site service conditions in Section 5.1.2.2.

14.2.5.3 The UPS and enclosure shall have a minimum rating of IP41.

14.2.6 Noise

14.2.6.1 The maximum noise level produced by the UPS shall be 50dB. This figure shall apply under all load conditions, with all panel doors closed and ventilation fans running.

14.2.6.2 Noise shall be measured 1 meter from the panel face.

14.2.7 Interference Protection

14.2.7.1 The supplied equipment shall conform to all relevant IEC Standards with regard to Radio Frequency Interference emissions and harmonic distortion.
14.3. Components of UPS

14.3.1 Rectifier/Battery Charger

14.3.1.1 The rectifier input shall be single phase.

14.3.1.2 The rectifier shall be of the constant voltage, current limited type and shall be correctly sized and rated for the requirements of both the batteries and the load.

14.3.1.3 The supply input to the UPS battery charger shall be fitted with a manual isolation switch and overload protection. Semi-conductor protection fuses if required shall be included as part of the UPS.

14.3.1.4 The output voltage and battery charging current shall be selected to suit Section 14.3.7.

14.3.1.5 The current rating shall be sufficient to supply the full rated load, whilst simultaneously charging the batteries.

14.3.1.6 The rectifier shall have the following protection features as minimum:
 - Internal current limiting to protect the output against overcurrent;
 - Automatic shut down if the DC voltage exceeds the maximum value allowed by the batteries or on over temperature;
 - Automatic shut down on over temperature.

14.3.2 Inverter

14.3.2.1 The inverter shall be a solid state, self-commutating type with single phase output.

14.3.2.2 The inverter shall be capable of operating within its output tolerances when supplying loads over the range between zero and full load and at the range of load power factors, with inverter DC input voltages varying over the range of battery voltages from discharged to fully charged.

14.3.2.3 The frequency shall normally be synchronised to that of the Bypass Supply but, if this supply goes out of tolerance, the inverter shall use its own internal, crystal oscillator generated frequency.

14.3.2.4 The output shall be fitted with overload protection to prevent damage to the inverter in the event of an overload/short circuit on the inverter output. The inverter shall be capable of supplying an overload of 150% for 1 minute and 125% for 10 minutes before operation of the static transfer switch.

14.3.2.5 The inverter shall have sufficient short circuit driving capacity to trip the load circuit breakers without operating either the current limiting feature or the static transfer switch.

14.3.2.6 The harmonics on the output shall be suitable for the connected loads and shall not exceed 3% Total Harmonic Distortion with 100% non-liner loads.

14.3.2.7 The UPS output bus shall be filtered and protected against surges, sags, and harmonic variation by the deployment of surge suppressors and appropriate voltage correction devices as mandated by IEEE 519 and IEEE C 462.41.2.
14.3.3 Controls and Protection

14.3.3.1 The following minimum controls and indications shall be shown on SCADA and be accessible on a local display (may be part of UPS unit).

- **Switches:**
 - Inverter on/off;
 - Static Transfer Switch controls;
 - Internal Maintenance Bypass;

- **Indicators:**
 - Battery Charge - on/failed;
 - Battery volts - high/low;
 - Inverter - failed/synchronised;
 - Load on - inverter/bypass;
 - Batteries supplying load (Battery Discharge);
 - High/low inverter DC input voltage;
 - Static switch on bypass AC line;
 - Battery disconnected;
 - Enclosure over-temperature;
 - Mains volts;
 - Battery charger volts;
 - Battery current;
 - Output volts;
 - Output current.

14.3.4 Static Bypass Switch

14.3.4.1 The static bypass switch shall provide for transfer of the load from the Inverter output to the bypass supply or vice versa.

14.3.4.2 In either automatic or manual mode, transfer shall occur in synchronism and without interruption.

14.3.4.3 Transfer from inverter output to bypass supply shall be initiated automatically by inverter fault, excessive overload or manually by pushbutton.

14.3.4.4 For transfer from the bypass supply back to the inverter output, the system shall be provided with a selectable option of an automatic return after a pre-set delay or a manual return initiated by pushbutton.

14.3.5 Internal Maintenance Bypass

14.3.5.1 A manually operated maintenance bypass shall allow the UPS internal equipment to be taken off line for maintenance. When the maintenance bypass is operating, all
14.3.6 Bypass Line Conditioner

14.3.6.1 The bypass line conditioner shall filter against supply spikes and glitches appropriate for the needs of the loads (instruments, DCS, computers etc.).

14.3.6.2 The bypass line conditioner shall consist of one of the following options:

- An isolating transformer;
- An isolating transformer complete with electronic conditioning;
- A UPS of the same design as the main units but without batteries fitted.

14.3.6.3 The required type will be as shown in the data sheets.

14.3.7 Batteries

14.3.7.1 The battery set shall be capable of starting the UPS even if no AC power is available (cold start) while still maintaining the required backup time.

Battery Selection

14.3.7.2 Batteries shall be sealed, leak-proof and maintenance free. Batteries and battery chargers shall be mutually compatible.

14.3.7.3 The batteries shall have a guaranteed lifetime that complies with Section 5.1.2 in the given application.

14.3.7.4 The batteries may be mounted either in the UPS cabinet or a separate battery cabinet (only if rack is not big enough to hold all relevant equipment) or on open racks. The mounting enclosure shall be impervious to the effects of the battery electrolyte used. A minimum clearance of 150 mm shall be maintained above each cell to allow proper air circulation. A minimum clearance above the cells (when the enclosure lid is open) shall be 300 mm. Adequate clearance shall also be maintained in between cells. The minimum air space between cells and between cells and external walls of the enclosure shall be 10 mm. Cells shall always be positioned in such a way that the electrolyte level markings (both minimum and maximum) can be easily seen.

14.3.7.5 Batteries shall have circuit breaker short circuit protection which may be also be used to isolate the batteries from the charger/inverter. When the batteries are isolated, the UPS shall continue to supply the load with interruption (providing there is no mains power shortage)

14.3.7.6 Battery maintenance tools shall be housed in a suitable space within the battery cubicle or in a separate wall mounting cabinet.

Battery Sizing

14.3.7.7 Batteries sizing shall be based on supplying the specified load for the required backup time at the specified ambient temperature whilst maintaining the specified minimum output voltage.

The following sizing factors shall be applied in sizing the batteries:

- Design margin 15%
Aging factor 125%

Battery Monitoring

14.3.7.8 The UPS shall be capable of monitoring its respective battery set to determine if the battery is failing. This monitoring shall be automatic and ongoing and shall not require additional equipment to be fitted to the batteries.

Battery Installation

14.3.7.9 Where the voltage of the battery exceeds 120 V, the batteries shall be provided with isolating switches, plugs or links to separate the battery into sections of less than 120 V for maintenance. Suitably identified inter-cell connectors with insulation of a different colour to other connectors may be used for this purpose.

14.3.8 **External Bypass (Maintenance Bypass Switch)**

14.3.8.1 An external bypass shall transfer the load from the UPS/bypass output to an alternative power supply. The external bypass shall consist of a manual make-before-break transfer switch with an electrical interlock connected to the UPS to prevent transfer of the output when the UPS output is not synchronised to the supply. The switch shall be fully rated for the UPS load and installed in a separate wall mounted enclosure.

14.3.8.2 When the switch is in the alternative supply position, it shall be possible to completely disconnect the UPS and batteries from all power supplies and remove it for maintenance.

14.3.8.3 The bypass switch shall be provided in its own wall mounted enclosure.

14.3.8.4 An auxiliary contact indicating that the switch has been set to the Bypass position shall be wired to the Plant Control System.

14.3.9 **Internal Devices**

14.3.9.1 Isolating devices shall comply with the requirements of AS/NZS IEC 60947.1 as appropriate for the duty of the device. They shall be pad lockable in the off position.

14.3.10 **Maintenance**

14.3.10.1 Equipment design shall allow testing and calibration of control and logic circuits while the UPS loads are switched to the bypass AC line. Test points and diagnostic lights shall be provided to facilitate adjustments and repairs.

14.3.11 **Panel Construction**

General

14.3.11.1 The UPS rack shall be a standard full height (43RU) rack and standard width.

Construction

14.3.11.2 The UPS shall comprise free standing metal clad panels suitable for indoor operation.

14.3.11.3 The total enclosure shall have a minimum ingress protection rating IP41.
14.3.11.4 Cubicle steel plate shall generally not be less than 1.6 mm. Cubicle doors shall be stiffened where necessary to prevent warping.

14.3.11.5 Each compartment shall be lockable and capable of being completely isolated from all supplies incoming and outgoing, prior to opening.

14.3.11.6 All live parts within the panel shall be fully shrouded to prevent accidental contact of live parts during commissioning and maintenance.

14.3.11.7 All controls shall be mounted on the door with labels correlating to that of the mimic diagram. It shall be possible to perform all switching operations with the panel door in the closed and locked position.

14.3.11.8 Generally forced ventilation will not be accepted, however if forced ventilation is required to dissipate heat from the panel the room air conditioning system shall allow for the total heat losses to the room housing the UPS system and be sized accordingly.

Gland Plates

14.3.11.9 Gland plates shall be provided at the bottom of the panel only and sized to suit the required number and size of cables.

Panel Wiring

14.3.11.10 All panel wiring shall be in accordance with Switchboard wiring requirements outlined in sections 7.3.29 and 7.3.30.

Terminal Strips

14.3.11.11 All control wiring leaving the UPS shall terminate on fully identified terminals, or terminal strips of adequate size and current rating. Terminal strips shall be identified in accordance with the appropriate schematic and/or terminating diagrams.

14.3.11.12 Extra terminals with bridging links shall be provided where multi-terminations are required.

14.3.11.13 All spare ancillary controls shall be wired down to spare terminals on terminal strip.

Earthing

14.3.11.14 An earth bar shall be provided at the bottom of each panel for common connection to all non-current carrying parts.

14.3.11.15 The earth bar shall be meet the requirement of AS/NZS 3000 and shall be suitable for terminating cables up to 70 mm² earth cables for external bonding.

14.3.11.16 All doors and hinged metallic parts shall be connected to the earth bar by minimum 6 mm² earth cable conductors.

14.3.11.17 The positive and negative buses of batteries shall be isolated from earth ground.

Lifting Lugs

14.3.11.18 Where necessary removable lifting lugs will be provided for transportation and erection purposes.
14.3.11.19 Standard paint finish as per Switchboard requirements in Section 7.3.14 shall be applied.

14.3.11.20 All finishes and materials used on battery enclosures or supports shall be resistant to the effects of the electrolyte used.

14.4. UPS Normal Mode

14.4.1 During normal operation the UPS shall provide precisely regulated and transient free power to its load.

14.4.2 Power to the rectifier shall be supplied from the primary AC source.

14.4.3 The rectifier shall supply the inverter with regulated DC power.

14.4.4 The inverter shall convert the DC power into regulated AC power for the load.

14.5. UPS Emergency Mode

14.5.1 On failure of the primary AC power, input power to the inverter shall be supplied from a battery bank.

14.5.2 When the AC power is restored, input power to the inverter shall be supplied automatically from the rectifier.

14.5.3 If the AC power is not restored before the discharge limit of the battery is reached (the discharge limit being designated by the battery manufacturer, the UPS shall automatically shut itself down in an orderly manner.

14.5.4 A signal shall be given to the plant control system when the AC power fails and power is supplied from the battery bank.

14.5.5 A signal shall be given to the plant control system of impending shutdown 15 and 5 minutes before time-out.

14.6. UPS Bypass Mode

14.6.1 The static switch shall transfer the load automatically without interruption to an alternative source of AC power on a failure of the UPS output.

14.6.2 A similar manually initiated facility shall be provided so that the UPS can be taken-out of service for maintenance.

14.6.3 Circuit breakers shall be provided as part of the static switch such that the complete UPS including the static switch may be isolated electrically for maintenance once the load has been transferred to the alternative source.

14.6.4 Retransfer for the load shall be accomplished automatically by the synchronising the UPS to the alternate source, paralleling the UPS to ramp into the load finally disconnecting the alternate source.

14.7. UPS Down-graded Mode

14.7.1 When it is necessary for the batteries to be taken out for maintenance, the DC input to the UPS shall be disconnected manually by a circuit breaker.
14.7.2 Under these conditions the UPS shall continue to operate as specified herein save for the loss of operation from the battery.

14.8. Remote Monitoring and Alarms

14.8.1 The system shall be provided with alarms that can be monitored by the Plant control system as well as locally displayed within the UPS unit itself.

14.8.2 The system features shall include:

- Individual annunciation for each alarm;
- ‘Latch-up’ for each alarm on fleeting alarms;
- Manual alarm reset; operation of this button shall reset any latched up alarm if the initiating condition has returned to normal.

14.8.3 Alarms shall be combined into the following groups with matching voltage free contacts provided for remote indication of the alarms to the plant control system:

- Group Alarm, WARNING; abnormal or warning conditions such as low battery volts;
- Group Alarm, TRIP: fault or shutdown/tripped conditions.

14.8.4 An alarm to indicate the battery circuit breaker open condition (or fused disconnect switch open or blown fuse condition) shall be provided as a voltage free contact wired to terminals for connection to plant control system.

14.8.5 All alarm relays shall be fail safe operation, i.e. de-energised in the alarm condition. They shall be fitted with a minimum of one normally open and one normally closed voltage free contact connected to terminals so as to provide a remote alarm repeat facility.

14.8.6 The rating of alarm contacts shall be 2A at 24V DC.

14.9. Ethernet Communication

14.9.1 Monitoring of the UPS and battery charger system shall be via Ethernet/TCP communication link to the plant control system.

15. Power Factor Correction

15.1. General

15.1.1 The PFC units are required to operate continuously and maintain a minimum power factor of 0.9 lagging.

15.1.2 Power factor correction units shall be suitable for permanent connection to the main switchboard.

15.1.3 The Power factor correction equipment shall provide multiple stage switching, four (4) switched stage minimum. Steps shall not exceed 25 kVAr.

15.1.4 Discharge devices shall reduce the terminal voltage to 50 V within one minute of de energisation.
15.1.5 Power factor correction equipment shall be installed within air conditioned buildings or switchrooms.

15.2. Capacitors

15.2.1 Capacitors shall be constructed of sealed stainless steel tanks fitted with overpressure and over-temperature switches that shall be input to the plant control system.

15.2.2 Aluminium or aluminium alloys shall not be used for any external fittings or components.

15.2.3 Inrush and harmonic blocking reactors shall be dry type.

15.2.4 Capacitor units shall be designed and installed with pressure switches to provide early isolation in the event of excess pressure within the relevant tanks.

15.3. Enclosures

15.3.1 Enclosures used to house power factor equipment shall comply with the requirements of Switchboard Construction outlined in section 7.

15.3.2 Generally the building air conditioning system shall be utilised for maintaining constant temperature. The power factor correction equipment shall incorporate ventilation by natural convection or forced air cooling while maintaining the IP rating.

15.3.3 Detailed dimensions, weights and footprint for each power factor correction enclosure shall be provided at the design stage.

15.3.4 Suitable means (e.g. eyebolts) shall be provided for lifting and transport of the power factor correction unit either by crane or by forklift.

15.3.5 The capacitor shall be cleaned, primed, and painted in accordance with Supplier’s standard practice that is applicable to the site service conditions (section 5.1.2). Top coat finish shall comply with requirements for site service conditions.

15.4. Labelling

15.4.1 Labelling of the enclosure shall comply with relevant Australian Standards for statutory labelling and switchboard labelling requirements for general labelling (see section 18) for further information.

15.4.2 A main nameplate shall be provided and as a minimum shall show the equipment identification number and title, the Supplier’s name and Unitywater project number and all relevant information relating to bus ratings, fault levels etc. This nameplate shall be engraved stainless steel. This nameplate shall be mounted next to the rating and connection plate.

15.5. Earthing

15.5.1 All earthing shall be installed in accordance with AS/NZS 3000 and related and referenced standards.

15.5.2 Each power factor correction unit shall be fitted with a copper earth bar of not less than 120 mm² section, to which shall be effectively connected all metal parts not intended to be live.

15.5.3 M10 earthing connection studs are required.
15.6. **PFC Controller**

15.6.1 **Control System Requirements**

15.6.1.1 Each power factor correction unit shall be provided with a complete control, instrumentation and protection system necessary for the safe and reliable operation of the unit. They shall be provided with interposing relays to interface with control devices where required.

15.6.1.2 The controller shall interface with external control equipment via a communications link for the monitoring of the power factor correction unit operation parameters, alarm and trip conditions. The communications link shall be Ethernet/TCP or Profinet communication link to SCADA dependent upon PLC platform and shall comply with the requirements of Pr9833 SCADA and PLC Architecture.

15.6.2 **PFC Control Panel**

15.6.2.1 The PFC control panel shall be mounted on the enclosure. All controls shall be accessible from outside the enclosure. All functions of the PFC controller shall be available for use and wired into the plant control system.

15.6.2.2 Terminal strips shall be provided for all wiring between input and output modules and all devices internal and external to the control panel.

15.6.2.3 The following parameters shall be provided on each PFC unit control panel as a minimum:

- Voltage (phase and line);
- Current;
- Frequency;
- Power Factor;
- Displacement Power Factor (\(\cos \phi \));
- Real, Reactive and Apparent Power (P, Q and S).

15.6.2.4 All monitoring and configuration parameters shall be accessible over the communications link.

15.6.3 **Alarm and Trip Conditions**

15.6.3.1 All alarm and trip conditions shall be monitored by the PFC control system and shall be annunciated at the PFC controller and on SCADA.

15.6.3.2 The alarm conditions shall include but not limited to the following:

- Controller failure;
- Low control voltage;
- Enclosure over-temperature;
- Capacitor fault;
- Over-Current;
- Over-Voltage.
16. Earthing

16.1 General

16.1.1 Earthing installations shall comply with the recommendations, regulations and requirements set out in AS/NZS 3000, the Electrical Supply Authority and relevant Acts and Regulations.

16.1.2 Where necessary, a site survey shall be carried out to determine soil resistivity and hence the optimum type, quantity and arrangement of earth electrodes in order to achieve the required resistance, together with any grading electrodes needed to control potential radiant around each building and tanks, etc. for the installation. These requirements shall be incorporated, as required, into the civil/structural design.

16.1.3 Main earthing conductors shall be provided from the main switchboard, main earth bar to steelwork, incoming services, etc., in accordance with AS/NZS 3000 and to the following:

- Main Earth Electrode Installation;
- Motor Control Centre Earth Bars;
- Mechanical Equipment.

16.1.4 No earthing system shall rely upon the metalwork of plant or equipment for earth continuity.

16.1.5 All materials used for earthing and bonding shall be suitable for the local site conditions and steel, aluminium and galvanised metal should not be used.

16.1.6 Calculations for earthing shall be provided to Unitywater to ensure compliance with AS/NZS 3000.

16.1.7 All doors for switchboards, MCC, Control panels, panels, LCSs shall be effectively earthed to the case by means of flexible connection not less than 4 mm² to a door stud.

16.1.8 The gland plate for all switchboards, MCC, Control panels, panels, LCSs shall be effectively earthed to the case.

16.1.9 Hinged joints carrying wiring shall be provided with flexible earth bonding strap of adequate size.

16.1.10 Cable ladder routes shall be bonded to the plant earth.

16.2 Equipotential Bonding

16.2.1 Equipotential bonding as a minimum shall include buried earth straps with brazed connections from main earth grid to all the below items:

- All items of process plant;
- Metallic pipework;
- Structural metalwork;
- All water retaining structures;
- Any lightning protection systems;
16.2.2 All metallic cable ladder and other supports shall be earthed.

16.2.3 All expansion joints in cable ladders and cable trays shall be bonded to ensure continuity.

16.2.4 The minimum size bonding and earthing conductors for cable trays/ladders shall be as per AS/NZS 3000 for the largest active conductor.

16.2.5 If the use of pipework or equipment with specialised non-conductive surface preparations cannot guarantee earth continuity, notably across flange joints then earth bonding conductors shall be installed to ensure continuity.

16.2.6 Earthing points shall be provided on all electrical enclosures.

16.2.7 All enclosures and items of mechanical equipment shall be effectively earthed.

16.2.8 All metal gland plates shall be earthed.

16.2.9 Glands fitted to plastic or painted steel gland plates shall be earthed using proprietary gland earthing lugs.

16.2.10 Radial connections to both the earth grid and equipotential bond systems shall be PVC yellow/green insulated, crimped with an approved ‘C’ connector to the grid/bond conductor and lug bolted to equipment.

16.2.11 Multiple earth connections within equipment shall terminate at earth bars with one conductor per screw, stud or tunnel type terminal. Tunnel type terminals shall have two screws.

16.3 Surge Protection/Lightning

16.3.1 Lightning and surge protection shall be installed on equipment and cables exposed to lightning strikes or electrical switching surges.

16.3.2 Lightning protection shall be designed to protect personnel and equipment from direct strike or indirect step and touch potentials as a result of a lightning strike.

16.3.3 Lightning protection equipment shall be earthed to the main earth system.

16.3.4 Power conditioning equipment and surge protection devices shall be fitted for protection against voltage disturbances.

16.3.5 Combined surge protectors and radio frequency filters shall be used for the power supplies to:

- Computers and related equipment;
- Telecommunications equipment;
- Electronic equipment such as closed circuit TV systems, public address and communications systems, radio base stations and the like;
- Control system equipment;
- Mains powered instruments;
- Fire equipment – including all Fire Indicator Panels (FIPs);
• Field instrument and communications circuits at particular risk of induced voltages due to lightning strikes or electrical switching shall be fitted with surge protectors at both the instrument and at the control system termination panel. Such circuits shall include:

• Instruments fitted in open exposed locations;
• Instruments located on the top of a building;
• Instrument and communications circuits that run between buildings;
• Circuits directly connected to power transformers or large LV motors (such as embedded RTDs or thermocouples in the motor windings).

17. Active Harmonic Filters

17.1 General

17.1.1 The active harmonic filters are required to operate continuously and maintain the Total Harmonic Distortion (THD) to below the limits defined in AS/NZS 61000.3.6. AHFs shall be suitable for permanent connection to the main switchboard.

17.1.2 The active harmonic filter equipment shall provide inverter switched capacitor banks to minimise harmonics created in the system.

17.1.3 Discharge devices shall reduce the terminal voltage to 50 V within one minute of de-energisation.

17.2 Type and Arrangement

17.2.1 The active harmonic filter shall be of the shunt configuration and of 3-phase, 3-wire type to filter harmonics in the phases. It shall be connected at the LV level in an installation allowing for the reduction of harmonic stress at load level and to reduce transformer losses and harmonic emissions to the feeding network. The AHF shall be able to work on Supply Authority fed networks as well as on standby generators.

17.2.2 The active harmonic filter shall have the following features:

• Mitigation of harmonics from the 2nd harmonic up to the 50th harmonic and limit harmonic distortion at their point of connection to the limits defined in AS/NZS61000.3.6;
• Reactive power compensation. Target power factor must be settable up to unity. Both capacitive and inductive modes must be possible;
• Provide load balancing.

17.2.3 The active filter shall measure the network currents at the supply side of the unit allowing for closed loop control. Current Transformers (CTs) shall be class 1 accuracy minimum and be sufficient for proper filter operation.

17.2.4 The AHF power inverter shall be based on IGBT technology. It shall employ a Phase Width Modulation technology using a fixed switching frequency.

17.2.5 The communication between the main controller board and the individual power modules must occur through an optical link to provide galvanic isolation.
17.3 Enclosures

17.3.1 Enclosures used to house active harmonic filter equipment shall comply with the requirements of Switchboard Construction 7.3.

17.3.2 Generally the building air conditioning system shall be utilised for maintaining constant temperature. The active harmonic filter equipment shall incorporate ventilation by natural convection or forced air cooling while maintaining the IP rating.

17.3.3 Detailed dimensions, weights and footprint for each power factor correction enclosure shall be provided at the design stage.

17.3.4 Suitable means (e.g. eyebolts) shall be provided for lifting and transport of the power factor correction unit either by crane or by forklift.

17.4 Mode of Operation

17.4.1 The active harmonic filter shall monitor all three phases of the LV line current in real-time and process the measured harmonics by means of a Digital Signal Processor based system.

17.4.2 The output of the Digital Signal Processor based system shall be a Pulse Width Modulated signal to control power modules based on IGBT technology that shall be controlled as a current source.

17.4.3 The control of the power modules and associated reactors shall be such that harmonic currents of exactly the opposite phase of those to be filtered are injected into the source of supply to the filter so that the harmonic currents flowing in the line are reduced to levels that can be individually programmed by the user.

17.4.4 The system shall be operated under closed loop control. The control system shall be such that the active filter cannot be overloaded.

17.4.5 The active filter shall be able to co-exist with tuned and detuned capacitor banks in some way.

17.5 Filtering Characteristics

17.5.1 The active harmonic filter shall be able to filter simultaneously at least 20 individual harmonic components, individually programmable in a frequency range from the 2nd to the 50th harmonic.

17.5.2 The degree of filtering shall be programmable for each harmonic in Amps.

17.5.3 The active harmonic filter shall allow for different filter modes to be set expressing the priority to be given to the filtering of harmonics and the generation of reactive power and load balancing.

17.5.4 The filtering efficiency shall not be less than 95%.

17.6 Reactive Power Compensation

17.6.1 The active harmonic filter shall be able to perform reactive power compensation and aim to compensate for a target displacement power factor ensuring correct operation in the presence of harmonics. The user must be able to choose this target power factor in a range from 0.6 lagging/leading to unity.
17.6.2 In addition, the filter shall also be able to generate or absorb a fixed amount of reactive power within the filter’s current capabilities on the user’s request.

17.7 **Heat Losses/Power Dissipation**

17.7.1 The active harmonic filter shall have intelligent control technology that minimises the filter switching losses for each operating point.

17.7.2 The heat loss from each active harmonic filter operating at full load shall not be more than 5 % of the module rating per module.

17.8 **AHF Protection**

17.8.1 The active harmonic filter shall incorporate its own protection devices that ensure protection against overcurrent, short-circuit, thermal overload, IGBT bridge abnormal operation, network voltage phase loss, network synchronisation loss and DC capacitor over and under-voltage.

17.9 **Capacitors**

17.9.1 Capacitors shall be constructed of sealed stainless steel tanks fitted with overpressure and over-temperature switches. Aluminium or aluminium alloys shall not be used for any external fittings or components.

17.9.2 Inrush and harmonic blocking reactors shall be dry type.

17.9.3 Capacitor units shall be designed and installed with pressure switches to provide early isolation in the event of excess pressure within the relevant tanks.

18. Labelling

18.1 **General**

18.1.1 The switchboard and all modules shall be labelled with equipment number and title in accordance with the Single Line Diagram.

18.1.2 Every exterior and interior device including terminals, terminal strips, fuses, switches, test blocks, indication lamps, relays and other equipment shall be identified by a label fixed, where applicable, by means of a dog tag near the device and oriented so that it is readable from the appropriate access door.

18.1.3 The label shall give both the device title or function and a unique alphanumeric identification code.

18.1.4 Within a single drive module, the power circuit breaker, contactor and thermal overload shall be labelled as per the circuit diagrams.

18.1.5 All device labels, other than proprietary legend and escutcheon plates on devices, are to be engraved with white/black/white traffolyte laminated engraving material and are to be fixed using stainless steel threaded screws.

18.1.6 External labelling shall be etched 316 stainless steel and fixed by 3mm stainless steel threaded screws.

18.1.7 Labels longer than 30 mm shall have clearance fixing holes to allow differential expansion of label and mounting.
18.1.8 Where labels are mounted on standoffs they shall be suitably backed to prevent breakage.

18.1.9 Label letter height shall be generally as outlined in Table 10 - Label Letter Height.

<table>
<thead>
<tr>
<th>Label</th>
<th>Letter Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchboard Equipment Number</td>
<td>30</td>
</tr>
<tr>
<td>Switchboard Title</td>
<td>20</td>
</tr>
<tr>
<td>Module</td>
<td>10</td>
</tr>
<tr>
<td>Equipment</td>
<td>5</td>
</tr>
<tr>
<td>Pushbutton Designation</td>
<td>3.5</td>
</tr>
<tr>
<td>LCS</td>
<td>5</td>
</tr>
</tbody>
</table>

18.1.10 All removable covers and protective shrouds which give access to exposed busbars or live terminals shall be labelled with red/white/red labels marked ‘DANGER 415V ISOLATE ELSEWHERE’.

18.1.11 Equipment connected to the line side of a switchboard incoming switch (e.g. voltmeters) shall be marked "DANGER - LINE SIDE CONNECTION – ISOLATE ELSEWHERE".

18.1.12 A label list shall be submitted to Unitywater for approval prior to manufacture.

18.1.13 A Stainless Steel label complying with this specification shall be fitted to the front of all LCS.

18.1.14 Pushbuttons and selector switches shall be labelled using proprietary legend plates or plastic labels complying with this specification.

18.1.1 Protection and Marker Tape

18.1.1.1 Mechanical protection shall be installed over underground cable systems including conduits for their entire route as required by AS/NZS 3000.

18.1.1.2 Mechanical protection shall be of approved proprietary manufacture consisting of either:

18.1.1.3 Polymeric cable protection covers manufactured from orange coloured material. Paint or other orange coatings on the covers is not acceptable;

18.1.1.4 Precast bricks or precast concrete. Concrete covers cast on site or in situ are not acceptable.

18.1.1.5 Orange Polyethylene marker tapes, 150 mm wide and 0.1 mm thick, shall be laid in the trench directly over all underground conduits/cables at a depth of 150mm.

18.1.1.6 The tape shall be marked with the warning "CAUTION ELECTRICITY" or similar in black letters that shall not fade.
18.1.2 Cable Markers

18.1.2.1 Underground cable route concrete markers shall be installed above all underground cable runs at every change of direction and on straight runs at least every 30 m.

18.1.2.2 Markers shall consist of a concrete block 400 mm2 and 100 mm deep with an engraved brass label attached. The marker shall identify the cable and indicate its direction of lay. Labels shall be fixed to the concrete block with screw fixings (not rawl plugs) and epoxy adhesive.

18.1.2.3 Markers in unpaved areas shall be installed with 20 mm projecting above the surface.

18.1.2.4 Markers in paved areas shall be flush with the surface.
Appendix 1 – Mandated Equipment List

Actuators
Rotork IQ 415 volt 3 phase 50 Hz power supply

Batteries
Maintenance free, lead acid 900CCA, N120, N200

Battery Chargers
CTEK M200 12V 15A, M300 12V 25A, XT14000 24V 14A

Circuit Breakers
- Miniature Circuit Breakers (MCB’s) – Motor, General Purpose, RCD
 - Schneider
 - NHP - Terasaki
 - Siemens
- Moulded Case Circuit Breakers (MCCB’s)
 - NHP – Terasaki
 - Schneider
- Air Circuit Breakers (ACB’s)
 - Schneider
 - NHP – Terasaki

Contactors
- NHP – Sprecher & Schuh CA7
 - Schneider
 - Siemens Sirus

Current Transformer
- Crompton 781-943 Series
- IME TAI BB XX/5A
- Phoenix

Current Transducer/Transmitter/Clip on CT
- Sentry SC 200-1
- Burkert SC200-1
- Phoenix

Din Rail
TS35 Aluminium or stainless steel only

Door Switches
Camsco SM202

Earth Link
- Clipsal BP 165 Series
- DORE Electrics 165E12

Earth Pits
ACO PEP225 Earth Rod Pit with Steel Cover (Part #75778)

Fuses
Alstom
Generator Controller and synchronisation controller
Deep Sea

HMI
Not Allowed

Indication Lamps
NHP – Sprecher & Schuh D7P Series
Schneider
Siemens SIRIUS

Isolators
Schneider
NHP Socomec SLB Series
Kraus & Naimer

Lighting
Area
Philips Metromine 70SON (for vent pole installations)
Philips Contempo
Emergency
Bardic NM10 or M10
Switchboard
ALI Bikini BB113
Pierlite MLC108
Switchroom
Pierlite SDW236TE with 36W-TLD high efficiency fluoro tubes
Pierlite VC218TE (outside building)

Managed Network Switches
Hirschmann (only for use on existing plants with these already installed)
Moxa EDS-510A-1GT2SFP plus Gigabit optical SFP modules as required, e.g. SFP-1GSXLC

Motor Protection Relays (Intelligent)
Schneider TeSys T motor management
Siemens Simocode

Neutral Link
Clipsal BP 165 Series
DORE Electrics 165E Series

Overload Relay - Electronic
NHP – Sprecher & Schuh CEP7
Schneider
Siemens 3RP series

P.E. Cell
Clipsal 56 SSR – 3 wire only

PROGRAMMABLE LOGIC CONTROLLER (PLC) - SCHNEIDER
Quantum Hot Standby system
Power Supply 140 CPS 114 20
CPU 140 CPU 672 60 Hot Standby Processor - 3072kB
Memory Card TSX MRP C007M Expansion Memory Card 7MB SRAM (where needed)
Rio Head 140 CRP 321 00 Remote IO Head Module - Ethernet
Ethernet Comms 140 NOE 771 01 Ethernet Communications Module

Remote I/O - Advantys STB
Power Supply STBPDT3100 Standard power distribution - 24Vdc
Power Supply STBCPS2111 Auxiliary power supply
NIM STBNIP2311 Standard Network Interface Module - Ethernet Modbus TCP/IP
D/I STBDI3725 Basic digital input module STB - 24Vdc - 16 I
D/O STBDO3705 Basic digital output module STB - 24Vdc - 16 O
A/I STBACI1400 Standard analog input kit STB - 4..20 mA - 8 I
A/O STBACO0220 Standard analog output kit STB - 4..20 mA - 2

PROGRAMMABLE LOGIC CONTROLLER (PLC) - SIEMENS
S7-400H Hot-Standby system
ET200SP remote I/O (ProfiNet) for new installations
ET200M remote I/O (ProfiNet) where upgrading S7-300 PLC racks

Phase Failure Relay
Carlo Gavazzi
Rhomberg SP430-DP

Power Meter
Schneider: Power Logic Power Meters
Siemens Sentron PAC3200

Power Supply
240VAC/24VDC
Puls QS10.241-C1

Protocol Converter
Red Lion DataStation Plus

Proximity switches
IFM Efector
NHP – Sprecher & Schuh D7P Series
Schneider
Siemens SIRIUS
Turck
Pepper and Fuchs

Pushbuttons
NHP – Sprecher & Schuh D7P Series
Schneider
Siemens SIRIUS

Relays
NHP – Finder 55 Series with DIN rail mounting base and retaining clip
Schneider

Selector Switches
Kraus & Naimer CA10 Series
NHP – Sprecher & Schuh
Schneider
Signal Isolators
APCS
Weidmuller

Socket Outlets and Switches
Internal: Clipsal Classic Series
External: Clipsal 56 Series, NHP ISO Sockets

Soft Starters
NHP AuCom EMX3
Danfoss MCD500
Schneider ATS22/48

Solenoids
Process System B25-2-2-8VM

Surge Diverters
Critec
Transtech TLP Series
Novaris
Erico
MTL

Surge Reduction Filter
Critec
Transtech TLP Series
Novaris
Erico
MTL
Weidmuller

Terminals
Phoenix UT series
Weidmuller W series

Thermistor Protection Relay
Schneider LT3 24Vdc

Thermostat
Rittal
Cosmotec

Time Delay Relays
Schneider Zelio
Carlo Gavazzi

Transfer Switches (Automatic)
Schneider
NHP – Terasaki
NHP Socomec SIRCOVER

Signal Transient Barriers
Novaris SL36-G
Novaris SL36-EC90 for use in disconnection cubicles
Critec
Erico
MTL SD32

Uninterruptible Power Supply
Eaton Powerware

Variable Speed Drives
Schneider ATV600 series
Fuji Frenic Aqua
Danfoss VLT Aqua

Ventilation Fans
Rittal
Cosmotec

Analogue Digital Display
Red Lion

Analyzers - DO, pH, Turbidity, Chlorine, Conductivity, Nutrient.
Endress & Hauser
Hach
Siemens Deolox 3/Evoqua

Flowmeters
ABB Watermaster
Endress & Hauser Promag
Emerson Rosemount E Series

Flow Switches
IFM Efector
Kelco

Level Transmitters
Vegawell - Hydrostatic
Vegapuls - Radar
Endress & Hauser
Emerson/Rosemount

Level Switches
Flygt ENM 10 Float with suitable cable length
IFM Efector

Level Control Relays Conductive
Emergency Pump Starter
Multitrode Safe-TL
Overflow
Multitrode Safe-FS

Level Probes Conductive
Multitrode

Limit Switch
Honeywell Heavy Duty LS series
Schneider
Endress & Hauser

Pressure Transmitter (Must be supplied with S/S isolating valve manifold)
Emerson/Rosemount
Endress & Hauser
ABB

Differential Pressure Transmitter (Must be supplied with S/S three way valve manifold)
Emerson/Rosemount
Endress & Hauser
ABB

Pressure Switches
SquareD Industrial Class 9012G
Endress & Hauser
Burkert